對數函數及其運算

2021-02-26 柳曙光老師

很多同學認為對數函數,對數運算很難。

其實對數很簡單。只要記住對數的定義,運算法則和函數圖像,就可以解決一切對數問題。

對數就是指數,指數就是對數。

一的對數是零,底數的對數是一。

常用對數以十為底,自然對數以e為底。e=2.71828……

平常的計算零e=2.7即可

對數計算的十六字真訣:內積外和,內商外差,指數提前,換底公式。

對數函數的圖像也非常的簡單,當底數大於一的時候,函數恆過定點一零,在零到正無窮單調遞增,值域是全體實數R。當底數大於零小於一時,函數恆過定點一零,在零到正無窮單調遞減,值域使全體實數R。

我是柳曙光老師。微信號是18734795279,加我的時候請註明孩子目前幾年級,謝謝。

一切為了孩子。

上善若水,水善利萬物而不爭,處眾人之所惡,故幾於道。

居善地,心善淵,與善仁,言善信,政善治,事善能,動善時,夫唯不爭故無尤。

請您喜歡作者一下以示鼓勵:)

相關焦點

  • 對數運算與對數函數
    對數運算是指數運算的逆運算,啥叫逆運算?
  • 必看系列4——對數及對數函數,對數運算、對數函數的性質
    (侯老師手機製作)上節課我帶領大家學習了指數函數的有關知識,這節課我們繼續學習。主要講解有關對數函數的知識。一、對數①對數的定義人教版教材給出這樣的定義↓(教材截圖)②對數的運算上節課我們講了有關指數的運算法則,實際上對數的運算法則是由指數函數的運算法則推算出來的。
  • 指數函數和對數函數的運算法則
    指數函數和對數函數在高考中也經常考到,首先我們要了解指數函數和對數函數的運算法則,來體會法則背後的故事,一切法則背後的實質是運算法則。學習指數函數和對數函數,是將抽象的概念變為具體的應用,慢慢變得更加精緻,更加完整的學習過程。
  • 必修一——對數與對數運算
    一、前言(廢話)高中數學我們已經學習了二次函數,指數函數(如果不記得的讀者可以往前面翻看一下),這次作者為讀者們講解的是對數與對數運算,對數是什麼呢?讀者們心裡有自己的認知嗎?二、對數對數函數是高中階段學習的一個新型的函數類型,也是高考常考的一個函數。學習對數函數必先學習一下什麼是對數?首先讓我們看看數學界的定義:一般地,如果那麼數x叫做以a為底N的對數,記作:其中a叫做對數的底數,N叫做真數。這就是數學界對於對數的定義。
  • (高考數學知識精講)對數和對數函數
    【考綱要求】1.掌握對數的概念、常用對數、對數式與指數式互化,對數的運算性質、換底公式與自然對數;2.掌握對數函數的概念、圖像和性質3.正確使用對數的運算性質;底數a對圖像的影響及對數函數性質的作用.4.通過對指數函數的概念、圖像、性質的學習,培養觀察、分析歸納的能力,進一步體會數形結合的思想方法;(友情提示:接下來80%的內容都會通過圖片的方式展示,請大家要時刻關注自己的流量走向哦。)
  • 對數和對數運算
    比如說:學了對數以後,你可能還不知道對數是什麼?對數的運算法則都還沒搞清楚,三、四節課下來,老師已經講完了,早己經進入對數函數了。只剩下你和對數在秋風中乾耗:對數,我認識你嗎?你怎麼這麼多運算法則?換底公式你為什麼長得這麼奇怪?有沒有人能告訴我對數恆等式是正確的,它不會是老師硬塞給我的吧。二. 關於對數,我很希望你高一就搞明白。不至於高三了還要死啃這個討厭鬼-對數。
  • 對數函數及其性質_基礎
    文章結尾的「閱讀全文」可以跳轉到知識點的講解部分和習題部分對數函數及其性質【學習目標】1.理解對數函數的概念,體會對數函數是一類很重要的函數模型;2.探索對數函數的單調性與特殊點,掌握對數函數的性質,會進行同底對數和不同底對數大小的比較;3.了解反函數的概念,知道指數函數與對數函數互為反函數.
  • 教學研討|2.2.1對數與對數運算
    之前學生已經學習了指數的相關內容,對於數的研究思路也有了一定的了解,對數是在指數基礎上定義的一種新數,所以這節課既是對指數的概念、運算性質、指數函數的深化與理解,又為學習對數函數打下基礎。同時也為今後複數的學習提供了研究思路與方法。
  • 【數學】對數函數
    到今天依舊帶著17世紀溫度的羊皮紙留下了複雜的圖形和對數方程。這也說明了當時指數函數還並沒有出現。17世紀的歐洲,由於航海和天文學的發展,計算越來越複雜,處理的的數字也越來越大。為了回應這個時代的呼應,對數作為計算工具被納皮爾發明。 納皮爾編寫了歷史上第一張對數表,也揭開了對數神秘的面紗:化乘除為加減,化乘方開方為乘除,將高級運算降為次級運算。
  • 一文教你快速掌握指數函數和對數函數
    對於高一的同學來說,指數函數是其高中階段接收到的全新指示,而很多人對於新的東西又有一種莫名的畏懼感,不過不用擔心,本節將讓你輕鬆學習指數及其指數函數!指數和對數的基本公式就如我們小學學習加減乘除一樣,指數和對數的運算也有相應的計算公式,而這些計算公式是需要我們記住的。下圖給出了常見的指數和對數的計算公式,這是高中階段必須記住的計算公式:
  • 第9課時 指數與對數的運算
    理解分數指數與根式概念;掌握分數冪的運算法則;理解對數概念、掌握對數性質與運算法則. ●見證考題 【考題】 (2004年廣東卷)函數f(x)=ln( 答案:e2x+2ex(x∈R) 點撥:本題考查對數式與指數式的轉化及求函數反函數的方法. ●知識連結 1.指數與對數的意義:ab=N
  • 吳國平:高考數學倒計時攻略,穩拿對數與對數函數
    對數函數的定義域及單調性:在對數式中,真數必須大於0,所以對數函數y=logax的定義域應為{x|x>0}.對數函數的單調性和a的值有關,因而,在研究對數函數的單調性時,要按0<a<1和a>1進行分類討論.
  • 【指數函數和對數函數】圖解普林斯頓微積分 08
    第 9 章指數函數和對數函數本章的主要內容:9.1 基礎知識首先需要掌握三點:指數運算法則、對數和指數的關係
  • 指數對數的運算技巧
    他發明對數的動機是為尋求球面三角計算的簡便方法,他依據一種非常獨等的與質點運動有關的設想構造出所謂對數方法,其核心思想表現為算術數列與幾何數列之間的聯繫。在他的1619年發表《奇妙的對數表的描述》中闡明了對數原理,後人稱為 納皮爾對數,記為Nap.㏒x,它與自然對數的關係為:Nap.
  • 對數log與指數函數的反函數
    且a>o,a≠1,N>0 2.將以10為底的對數叫做常用對數,並把 log(10) N 記為 lg N. 3.以e為底的對數稱為自然對數,並把  log(e) N 記為 ln N. 零沒有對數. 在實數範圍內,負數無對數。在複數範圍內,負數有對數。
  • 高中數學專題---剖析對數運算難點,增強高一新生自信
    對數函數是高中數學中的一種重要的函數,也是高考的熱點知識之一。學習對數函數常會遇到一些難點,使解題思維陷入困境,歸納起來主要有三個難點。難點一:底數不統一對數的運算性質及相關的都是建立在底數相同的基礎上的,但實際問題中,對數的運算、變形卻經常要遇到底數不相同的情況,碰到這種情形,該如何來突破呢?主要有三種處理的方法:(1)化指數式:對數函數與指數函數互為反函數,所以它們之間有著密切的關係:logaN=b --- a^b=N, 因此在處理有關對數問題時,經常將對數式化為指數式來幫助解決。
  • 高中數學必修一:對數與對數函數最全題型課堂筆記,共7種題型
    初中階段已經學習過一次函數、反比例函數和二次函數等三種基本初等函數,高中階段又先後學習了指數函數、對數函數和冪函數三種基本初等函數。前面的文章分享了指數與指數函數的5種常見題型,本文和大家分享一下對數與對數函數的七種常見題型課堂筆記,供大家參考!
  • 高一二三的同學,想複習指數函數對數函數的可以看這裡
    帶大家複習一波指數函數對數函數及冪函數相關習題的解法,有問題請留言討論。考察對數函數運算指數函數運算。二、填空題解析:求定義域就是求使函數有意義x的範圍,函數中要保證根號下式子大於0即對數函數值大於0,同時要保證對數函數真數大於0,求出範圍取交集。
  • 高考數學對數函數五大基礎考點講解及相關的解題技巧
    高考數學對數函數五大基礎考點講解,八大重要公式及其相關的解題技巧本課程為高考複習資料內容,適用於高一及高一以上的學生。請根據自身情況選擇性閱讀。符號說明:log34:以3為底4的對數,為區分,將真數部分設為黑體。
  • 高一數學(上):指數與對數函數單元測試卷,全校差點出現滿分!
    在高中數學必修(一)第三單元裡,我們學習了指數函數與對數函數,這一單元主要考查了指數函數圖像及其性質、對數函數圖像及其性質、指數及對數的運算、指數式與對數式關係的轉換、單調性、定義域及值域等。本次單元測試,最高146分,最低只有16分,這個差距還是很大的,但是得最高分的同學,本應該取得滿分的,但因為自己的答題習慣,導致失分,下來我們就一起來看看這套試卷及其試題吧!