甲烷溫和條件下直接催化轉化研究綜述

2021-01-10 科學網

 

近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室研究員鄧德會和中科院院士包信和團隊在

Chem

上發表綜述文章,系統總結並展望了熱催化、電催化、光催化技術在甲烷溫和條件下直接轉化方面的研究進展。

 

甲烷是天然氣、頁巖氣、可燃冰等的主要成分,是一種豐富的自然資源,它不僅被大量用作燃料供給,也是眾多工業化學品的源頭原料。因此,甲烷的催化轉化在工業和學術界引起了廣泛的研究興趣。然而,甲烷分子的高度穩定性,以及高的C-H鍵能使其在溫和條件下的活化或轉化極具挑戰,甲烷的選擇活化和定向轉化也因此被認為是催化化學領域中的聖杯式課題。目前,工業上甲烷的轉化主要是經水蒸氣重整製備合成氣(Syngas,一氧化碳和氫氣的混合氣),以及合成氣後續進一步轉化成各類有機化學品。該路線中甲烷水蒸氣重整過程通常需要在高溫(700°C-1100°C)條件下進行,合成氣的後續轉化也通常需要高溫高壓等苛刻條件,這增加了該過程的經濟成本和環境壓力。因此,探索溫和條件下甲烷直接轉化製備高附加值的化學品的技術是一個迫切但又極具挑戰的課題。

 

該綜述系統總結了熱催化、電催化、光催化在甲烷溫和條件下轉化的研究進展,尤其對其中具有優異C-H活化能力的催化劑進行了重點介紹,在催化劑設計、理論計算模擬、反應條件的選擇、產物精確定量等方面進行了詳細的論述。綜述展望了未來甲烷活化和轉化的發展方向,指出了將來開發低溫下利用氧氣進行甲烷轉化的迫切性,指出限域單中心活性位點以及多組元催化劑在未來甲烷低溫催化轉化方面的重要性,並提出採用多能(熱、電、光)耦合進行甲烷催化轉化將有利於集成各種活化方式的優勢以實現更加高效的甲烷轉化。綜述為未來開發更加高效的甲烷轉化新途徑提供了借鑑。

 

 

以上研究得到國家科技部重點研發計劃、國家自然科學基金重大項目、中科院前沿科學重點研究項目、中科院潔淨能源創新研究院合作基金項目等資助。(來源:中國科學院大連化學物理研究所)

 

 

 

大連化物所發表甲烷溫和條件下直接催化轉化研究綜述

 

 

 

 

 

特別聲明:本文轉載僅僅是出於傳播信息的需要,並不意味著代表本網站觀點或證實其內容的真實性;如其他媒體、網站或個人從本網站轉載使用,須保留本網站註明的「來源」,並自負版權等法律責任;作者如果不希望被轉載或者聯繫轉載稿費等事宜,請與我們接洽。

相關焦點

  • 大連化物所發表甲烷溫和條件下直接催化轉化研究綜述
    近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室研究員鄧德會和中科院院士包信和團隊在Chem上發表綜述文章,系統總結並展望了熱催化、電催化、光催化技術在甲烷溫和條件下直接轉化方面的研究進展。
  • 我研究人員實現甲烷在室溫條件下直接催化轉化
    甲烷作為天然氣、頁巖氣、可燃冰的主要成分,擁有最穩定的烷烴分子結構,具有高度的四面體對稱性,極難在溫和的條件下對其活化。因此,甲烷的選擇活化和定向轉化一直是世界性的難題,被稱為化學領域「聖杯」式的研究課題。
  • 【動態】大連化物所發表碳一分子溫和條件下催化轉化綜述文章
    大連化物所催化基礎國家重點實驗室二維材料與能源小分子轉化創新特區研究組(05T6組)鄧德會研究員團隊在溫和條件下碳一分子催化轉化方面的研究工作受到國內外同行的廣泛關注
  • 科學家發文探討碳一分子溫和條件下催化轉化—新聞—科學網
    甲烷、一氧化碳、甲醇等碳一分子的催化轉化在碳基能源中發揮著重要作用。
  • 研究人員在溫和條件下高效率地將甲烷轉化為甲酸
    甲烷是生產高附加值化學品的前景廣闊的物質。甲烷在溫和條件下轉化為增值化學品或燃料已成為能源和催化領域最熱門的課題之一。然而,由於甲烷分子的高對稱性和低極化性,使得在溫和條件下活化甲烷具有挑戰性。此外,目標產物通常比甲烷反應性更強,容易過度氧化成溫室氣體CO2。
  • 《Chem》 :鄧德會、包信和團隊實現甲烷室溫直接催化轉化
    ,發現石墨烯限域的單原子鐵中心可以在室溫條件下(25°C)直接將甲烷催化轉化為高附加值的C1含氧化合物。然而,甲烷是最穩定的烷烴分子,具有高度的四面體對稱性,其電離能高、不具有電子親和性、沒有永久電偶極矩且極化率低,其C-H鍵的鍵能高達434 KJ/mol,極難在溫和條件下活化。因此,甲烷的選擇活化和定向轉化一直是世界性的難題,被譽為化學領域「聖杯」式的研究課題。
  • 我國科學家找到室溫條件下轉化甲烷新途徑
    甲烷,有機化學中最難被轉化的「頑固分子」。近日,上海科技大學物質科學與技術學院左智偉團隊破解了這一難題,他們找到了一個低成本、高效率的催化劑組合,室溫條件下,就可實現甲烷轉化。這為甲烷轉化為火箭推進劑燃料等高附加值化工產品提供了新方案,為我國高效利用特有稀土金屬資源提供了新思路。相關研究成果日前發表在國際學術期刊《科學》上。
  • 科研人員實現甲烷低溫高效直接催化轉化制甲酸
    近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室二維材料與能源小分子轉化創新特區研究組研究員鄧德會和副研究員於良團隊在甲烷低溫轉化制含氧化合物研究中取得進展,發現ZSM-5孔道晶格限域的配位不飽和Fe位點可在溫和條件下直接催化甲烷高效定向轉化制甲酸。
  • 深圳先進院等發表低溫甲烷氧化轉化研究進展綜述
    近日,中國科學院深圳先進技術研究院材料所(籌)光子信息與能源材料研究中心馬明副研究員團隊與韓國延世大學Jong Hyeok Park教授團隊合作,在Advanced Science(Advanced Science2020, 2001946; IF:15.84)上發表題為Catalytic Oxidation of Methane to Oxygenated
  • 深圳先進院等發表低溫甲烷氧化轉化研究綜述文章
    近日,中國科學院深圳先進技術研究院先進材料科學與工程研究所(籌)光子信息與能源材料研究中心副研究員馬明團隊與韓國延世大學教授Jong Hyeok Park團隊合作,在Advanced Science上發表題為Catalytic Oxidation of Methane to Oxygenated
  • 甲烷室溫一步轉化液態產品成真
    ,解決了利用光能在室溫下把甲烷一步轉化為液態產品的科學難題,為甲烷轉化成高附加值的化工產品提供了嶄新的解決方案。  中國科學院院士、上海科技大學副校長丁奎嶺這樣評價這項研究成果:「由於甲烷分子碳氫鍵的高度穩定性和弱極性,它的轉化極具挑戰性,通常需要高溫高壓等苛刻的反應條件,因此如何在溫和條件下實現甲烷分子碳氫鍵的官能團化,被認為是化學中的『聖杯』。左智偉科研團隊通過精妙的催化反應設計,利用光的促進作用,在室溫下實現了甲烷分子的轉化,為甲烷的資源化和高值化利用開闢了一條新途徑。」
  • 甲烷細菌轉化之謎破解,甲烷轉化將有質的飛躍
    甲烷分子示意圖甲烷細菌是著名的「甲烷清道夫」,它們可以利用甲烷-甲醇轉化反應,輕鬆地將甲烷轉化為可用燃料。長期以來,甲烷細菌的轉化能力一直吸引著研究人員的關注。然而,甲烷細菌究竟是如何輕而易舉地進行複雜的甲烷反應卻一直是一個謎。
  • Pd修飾的ZnO-Au雜化材料高效光催化甲烷轉化為乙烯的中間體形成和...
    Pd修飾的ZnO-Au雜化材料高效光催化甲烷轉化為乙烯的中間體形成和脫氫 作者:小柯機器人 發布時間:2020/12/31 23:22:44 中國科學技術大學熊宇傑團隊揭示了Pd修飾的ZnO-Au雜化材料高效光催化甲烷轉化為乙烯的中間體形成和脫氫過程
  • 水是甲烷催化轉化為甲醇的關鍵
    美國能源部布魯克海文國家實驗室的科學家揭示了新的細節,這些細節解釋了高選擇性催化劑如何將甲烷(天然氣的主要成分)轉化為甲醇(一種易於運輸的液體燃料和用於製造塑料、油漆等日用品的原料)。這些研究結果可以幫助設計出更高效/選擇性的催化劑,使甲烷轉化成為一種經濟上可行、環境上有吸引力的替代排放或燃燒 "廢氣 "的方法。
  • 「甲烷室溫催化」研究進展科普解讀—新聞—科學網
    ,在室溫條件下(25℃)直接將天然氣的主要成分甲烷催化並且轉化為其他化合物,實現了化學領域「聖杯」式難題的重大突破,邁出了甲烷室溫催化的第一步。他非常興奮,後來研究發現,是鉑金粉末加快了乙醇(酒精)和空氣中的氧氣發生化學反應,生成了醋酸。鉑金粉末就是人類發現的第一種催化劑。 目前甲烷的直接轉化所選用的催化劑是傳統的過渡金屬,如鐵、鐵鈷等、,但反應仍然需要在600~1100℃這樣高的溫度下才能夠進行。如果有一種催化劑,能夠降低甲烷直接轉化的反應溫度,將節省大量的能耗,對基礎研究和工業應用具有重要意義。
  • 我國甲烷高效轉化研究取得重要突破
    近日,中國科學院大連化學物理研究所包信和院士團隊基於「納米限域催化」的新概念,創造性地構建了矽化物晶格限域的單中心鐵催化劑,成功實現了甲烷在無氧條件下選擇活化,一步高效生產乙烯、芳烴和氫氣等高值化學品
  • 新方法實現甲烷低溫高效直接制甲酸—新聞—科學網
    甲烷(CH4)是一種重要的化石能源,廣泛存在於天然氣、頁巖氣、可燃冰等礦產資源中。
  • 甲烷綠色轉化新方案面世
    本報上海7月30日電(記者姜泓冰)上海科技大學左智偉科研團隊在光促進甲烷轉化這一重要能源化工領域取得突破性進展:他們成功發展了一種廉價、高效的鈰基催化劑和醇催化劑的協同催化體系,解決了利用光能在室溫下把甲烷一步轉化為液態產品的科學難題,為甲烷轉化成高附加值的化工產品(例如火箭推進劑燃料
  • NSR綜述:從氮氣直接合成氮-碳鍵
    但是氮氣分子極其穩定,其活化和轉化極具挑戰性。工業合成氨(NH3)是人類直接利用空氣中氮氣的最成功案例,而幾乎所有的人工合成含氮有機化合物都是以氨為基礎原料製備的。傳統的合成氨過程條件極其苛刻,還存在著許多重大科學和技術問題需要解決。
  • :多孔有機聚合物負載的單位點Pd催化劑用於常壓下甲烷氧化為三氟乙酸甲酯
    甲烷在低溫低壓下高效轉化為甲醇仍然是一個巨大的挑戰,這在很大程度上是因為甲烷的惰性和較差的溶解性。金屬催化劑在多孔骨架內的分離防止了具有高催化活性的配位不飽和配位的金屬物種的聚集和分解,從而使活性催化劑具有在均相催化體系中無法獲得的高穩定性。同時,MOFs和POPs能夠選擇性地吸附包括氣態物質在內的有機化合物。因此MOFs/POPs負載的固體催化劑有望在溫和的條件下實現甲烷直接轉化為甲醇。