Advances in the Masquelet technique: Myeloid-derived suppressor cells promote angiogenesis in PMMA-induced membranes
陸軍軍醫大學新橋醫院骨科周躍、李傑課題組
作者:Wenkai Wang, Rui Zuo, Haixia Long, Yanqiu Wang, Yang Zhang, Chao Sun, Gang Luo, Yuan Zhang, Changqing Li, Yue Zhou, Jie Li
發表情況:Acta Biomaterialia 2020 May;108:223-236,doi:10.1016/j.actbio.2020.03.010.
The periosteum plays a critical role in bone formation and defect reconstruction. The concept of tissue engineering in the periosteum has been suggested to solve the clinical problems related to bone defect repair. Insertion of polymethyl methacrylate (PMMA) bone cement can induce the autologous generation of a tissue-engineered periosteum and has been considered as a promising strategy for bone defect reconstruction. The PMMA-induced membrane is a crucial element in the reconstruction of bone defects, especially for angiogenesis, but its biological mechanism remains elusive. Here, a PMMA-induced membrane model was established using a femoral critically sized defect in mice. We identified myeloid-derived suppressor cells (MDSCs) as a regulatory component of induced membrane vascularization. The increased number of MDSCs was markedly linked to increased membrane thickness and capillary density. Importantly, the results of an in vitro coculture assay indicated that MDSCs of the induced membrane further facilitated the angiogenic capacity of human umbilical vein endothelial cells (HUVECs) by upregulating the expression of VEGFA, Ang2 and HIF-1α. Furthermore, signaling pathway blockade results suggested that STAT3 activation is involved in the upregulation of VEGFA, Ang2 and HIF-1α expression in induced membrane MDSCs. Our findings provide new insights into the mechanism of angiogenesis in the PMMA-induced membrane and confirm the key signaling molecules of MDSCs in induced membrane angiogenesis. Based on these results, this strategy may become a new therapy for the treatment of large bone defects in the future.
骨膜在骨形成和骨缺損重建中發揮重要作用。既往學者提出了運用骨膜組織工程技術解決骨缺損修復問題。在大段骨缺損修複方面,Masquelet技術運用PMMA骨水泥材料可誘導形成一種自體的組織工程化骨膜(誘導膜),目前大量研究證實了該技術有效促進骨缺損重建。PMMA誘導膜是Masquelet技術中促進骨缺損重建,尤其是血供形成的關鍵因素,但其分子生物學機制尚不清楚。本研究建立了小鼠股骨骨缺損PMMA誘導膜模型,並證實了髓源性抑制細胞(MDSCs)是誘導膜血管化的重要調節因素。MDSCs數量的增加與誘導膜的厚度和毛細血管密度的增加顯著相關。體外共培養實驗證實了,誘導膜組織中的MDSC通過上調VEGFA,Ang2和HIF-1α的表達,能夠誘導臍靜脈內皮細胞的血管生成。此外,信號通路阻斷實驗結果表明,STAT3的激活與誘導膜MDSCs的VEGFA,Ang2和HIF-1α表達上調有關。本研究為PMMA誘導膜血管生成機制提供了新的研究思路,並證實了MDSCs在誘導膜血管生成過程中的關鍵作用,為未來治療大段骨缺損提供新的治療靶點。
Figure 1. 小鼠股骨誘導膜模型的構建與評估
(A)術後4周X線評估;(B)製作股骨缺損並植入PMMA骨水泥材料;(C)誘導膜(4周)大體觀;(D)誘導膜HE染色;(E)股骨斷端與誘導膜連接區域;(F)正常股骨組織切面(*:骨膜)。
Figure 2. 誘導膜成骨和成血管相關因子鑑定
(A)誘導的膜標本中VEGFA,FGF2,Ang2和BMP2高表達。(B)不同時間點誘導膜中新生血管鑑定(CD31陽性)。
Figure 3. 誘導膜中CD11b+Gr1+細胞較骨膜顯著增加
(A)誘導膜免疫細胞成分分析;(B)誘導膜與骨膜CD11b+Gr1+細胞含量對比;(C)不同時間點誘導膜CD11b+Gr1+細胞含量變化。
Figure 4. 誘導膜中CD11b+Gr1+細胞是髓源性抑制細胞(MDSC)
(A)QPCR證實Arg1和iNOS在誘導膜中高表達;(B)流式細胞術檢測誘導膜中CD11b+Gr1+細胞Arg1,iNOS和ROS表達強度;(C、D)誘導膜中CD11b+Gr1+細胞具有T細胞免疫抑制功能。(C)通過流式細胞術分析檢測,培養72小時後,有或沒與CD11b+Gr1+細胞共培養後,CD8+T細胞中IFN-γ和TNF-α的表達下降。(D)與CD11b+Gr1+細胞共培養後,CD8+T細胞增殖能力顯著下降。
Figure 5. MDSCs促進誘導膜血管生成
(A)吉西他濱耗竭骨髓的CD11b+Gr1+細胞;(B)MDSC耗竭後,誘導膜的厚度和毛細血管密度顯著下降。內皮細胞用抗CD31抗體(紅色)染色,細胞核用DAPI(藍色)染色;(C)MDSC移植後,誘導膜的厚度和毛細血管密度顯著增加。
Figure 6. AG490通過抑制STAT3信號傳導抑制MDSC血管生成
(A、B)AG490顯著下調STAT3,同時VEGFA,Ang2和HIF-1α表達下降;(C-E)AG490抑制MDSC的STAT3通路後,對共培養的內皮細胞成血管作用下降(運動能力、遷移能力、成管能力)。
以上研究結果表明,小鼠股骨骨缺損模型可成功構建PMMA誘導膜。在誘導膜炎症微環境刺激下,骨髓中的CD11b+Gr1+細胞大量活化為MDSC,從而具備T細胞抑制功能。PMMA骨水泥周圍大量的MDSC促進了誘導膜的形成和膜的血管化。此外,誘導膜中MDSCs通過上調STAT3信號,分泌VEGFA,Ang2和HIF-1α促進內皮細胞血管生成。這些發現揭示了MDSCs在誘導膜促進骨缺損修復中的重要作用。未來,MDSCs可能作為大段骨缺損修複方面的新的治療靶點。