##
熱電材料性能的優化一直備受關注。第一性原理的計算也被廣泛應用於熱電材料,以分析其機理及篩選潛在的高性能候選材料。近年來,數據驅動的機器學習方法也被引入熱電領域,以加速熱電材料的搜索。機器學習的一般過程包括數據收集、機器學習、驗證樣本選擇和計算驗證。大多數研究中,機器學習模型在已知數據集上表現很好,但沒有驗證已知數據之外的可靠性。而另一方面,在尋找新材料的過程中,機器學習模型的外推能力又至關重要。弱外推能力一般可通過擴展數據樣本來改善,但增加大量樣本的成本高昂。主動學習是一種通過外部驗證更新機器學習模型的框架,旨在用儘可能少的驗證樣本最大程度地提高機器學習模型的外推能力。
圖1:類金剛石結構熱電材料搜索空間及主動學習框架
上海大學材料基因組工程研究院的楊炯教授、南方科技大學物理系的張文清教授等,基於前期高通量計算的158個類金剛石熱電材料的功率因子,用主動學習的框架結合機器學習和第一性原理計算,建立了高精度的外推模型。主動學習的框架包括資料庫、機器學習和驗證樣本選擇模塊、計算驗證模塊(圖1)。驗證樣本的選擇策略對主動學習的精度和效率有很大影響。在嘗試的多種策略中,以多種機器學習算法的爭議,使推選驗證樣本標準的「委員會推選策略」得到了外推能力最強的模型。在分析搜索空間中所有化合物的功率因子後發現,磷族化合物、含有空位和小原子半徑元素的硫族化物,可能具有較大的功率因子(圖2)。主動學習架構的應用不只局限於熱電材料,也可應用於其他功能材料,對加速高性能材料的發現具有重要的意義。
圖2:通過外推結果預測的具有高p型功率因子的新型熱電材料
該文近期發表於npj Computational Materials6: 171 (2020),英文標題與摘要如下,點擊左下角「閱讀原文」可以自由獲取論文PDF。
Active learning for the power factor prediction in diamond-like
thermoelectric materials
Ye Sheng, Yasong Wu, Jiong Yang, Wencong, Pierre Villars & Wenqing Zhang
The Materials Genome Initiative requires the crossing of material calculations, machine learning, and experiments to accelerate the material development process. In recent years, data-based methods have been applied to the thermoelectric field, mostly on the transport properties. In this work, we combined data-driven machine learning and first-principles automated calculations into an active learning loop, in order to predict the p-type power factors (PFs) of diamond-like pnictides and chalcogenides. Our active learning loop contains two procedures (1) based on a high-throughput theoretical database, machine learning methods are employed to select potential candidates and (2) computational verification is applied to these candidates about their transport properties. The verification data will be added into the database to improve the extrapolation abilities of the machine learning models. Different strategies of selecting candidates have been tested, finally the Gradient Boosting Regression model of Query by Committee strategy has the highest extrapolation accuracy (the Pearson R = 0.95 on untrained systems). Based on the prediction from the machine learning models, binary pnictides, vacancy, and small atom-containing chalcogenides are predicted to have large PFs. The bonding analysis reveals that the alterations of anionic bonding networks due to small atoms are beneficial to the PFs in these compounds.
#木木西裡#
內容來源:知社學術圈
20 歲感染 HIV,病情被醫院判死刑後:什麼才是「活著」?
5個地球之外的實驗
嫦娥五號成功著陸月球
特別聲明:本文發布僅僅出於傳播信息需要,並不代表本公共號觀點;如其他媒體、網站或個人從本公眾號轉載使用,請向原作者申請,並自負版權等法律責任。