本文主要內容,介紹求不定積分∫x^3/√(1-x^2)dx的三種方法和步驟。
解法一:
思路:根據分子分母的關係,直接變形化簡求得:
I=-∫[x(1-x^2)-x]dx/√(1-x^2)
=-∫x(1-x^2)dx/√(1-x^2)+ ∫xdx/√(1-x^2)
=-∫x√(1-x^2)dx-(1/2) ∫d(1-x^2)/√(1-x^2)
=(1/2) ∫√(1-x^2)d(1-x^2)-√(1-x^2)
=(1/3)√(1-x^2)^3-√(1-x^2)+c
解法二:
思路:利用不定積分的分部積分方法求得:
I=∫x^2*xdx/√(1-x^2)
=-(1/2)∫x^2d(1-x^2)/√(1-x^2)
=-∫x^2d√(1-x^2)
=-x^2√(1-x^2)+ ∫√(1-x^2)dx^2
=-x^2√(1-x^2)-∫√(1-x^2)d(1-x^2)
=-x^2√(1-x^2)-(2/3)√(1-x^2)^3+c
解法三:
思路:利用三角函數的代換關係求得。
設x=sint,則cost=√(1-x^2),此時:
I=∫sin^3td(sint)/√(1-sin^2t)
=∫sin^3t*cost dt/cost
=∫sin^3 t dt
=∫sint(1-cos^2 t)dt
=∫sintdt-∫sintcos^2 tdt
=-cost+∫cos^2tdcost
=-cost+(1/3)cos^3 t+c
=-√(1-x^2)+ (1/3)√(1-x^2)^3+c.
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺「網易號」用戶上傳並發布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.