原子力顯微鏡/AFM各種成像模式的原理

2021-01-19 華人電子顯微鏡學會

原子力顯微鏡/AFM的基本原理

原子力顯微鏡/AFM的基本原理是:將一個對微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由於針尖尖端原子與樣品表面原子間存在極微弱的排斥力,通過在掃描時控制這種力的恆定,帶有針尖的微懸臂將對應於針尖與樣品表面原子間作用力的等位面而在垂直於樣品的表面方向起伏運動。利用光學檢測法或隧道電流檢測法,可測得微懸臂對應於掃描各點的位置變化,從而可以獲得樣品表面形貌的信息。下面,我們以雷射檢測原子力顯微鏡/AFM(Atomic Force Microscope Employing LaserBeam Deflection for Force Detection, Laser-AFM)——掃描探針顯微鏡家族中最常用的一種為例,來詳細說明其工作原理。

 圖1.雷射檢測原子力顯微鏡/AFM/AFM探針工作示意圖


如圖1所示,二極體雷射器發出的雷射束經過光學系統聚焦在微懸臂(Cantilever)背面,並從微懸臂背面反射到由光電二極體構成的光斑位置檢測器(Detector)。在樣品掃描時,由於樣品表面的原子與微懸臂探針尖端的原子間的相互作用力,微懸臂將隨樣品表面形貌而彎曲起伏,反射光束也將隨之偏移,因而,通過光電二極體檢測光斑位置的變化,就能獲得被測樣品表面形貌的信息。


在系統檢測成像全過程中,探針和被測樣品間的距離始終保持在納米(10e-9米)量級,距離太大不能獲得樣品表面的信息,距離太小會損傷探針和被測樣品,反饋迴路(Feedback)的作用就是在工作過程中,由探針得到探針-樣品相互作用的強度,來改變加在樣品掃描器垂直方向的電壓,從而使樣品伸縮,調節探針和被測樣品間的距離,反過來控制探針-樣品相互作用的強度,實現反饋控制。因此,反饋控制是本系統的核心工作機制。


本系統採用數字反饋控制迴路,用戶在控制軟體的參數工具欄通過以參考電流、積分增益和比例增益幾個參數的設置來對該反饋迴路的特性進行控制。


2.原子力顯微鏡/AFM的硬體結構

在原子力顯微鏡/AFM(AtomicForce Microscopy,AFM)的系統中,可分成三個部分:力檢測部分、位置檢測部分、反饋系統。

 圖2原子力顯微鏡/AFM(AFM)系統結構


2.1力檢測部分

在原子力顯微鏡/AFM的系統中,所要檢測的力是原子與原子之間的範德華力。所以在本系統中是使用微小懸臂()來檢測原子之間力的變化量。微懸臂通常由一個一般100~500μm長和大約500nm~5μm厚的矽片或氮化矽片製成。微懸臂頂端有一個尖銳針尖,用來檢測樣品-針尖間的相互作用力。這微小懸臂有一定的規格,例如:長度、寬度、彈性係數以及針尖的形狀,而這些規格的選擇是依照樣品的特性,以及操作模式的不同,而選擇不同類型的探針。

以下是一種典型的AFM懸臂和針尖:

 

2.2位置檢測部分

在原子力顯微鏡/AFM的系統中,當針尖與樣品之間有了交互作用之後,會使得懸臂擺動,所以當雷射照射在微懸臂的末端時,其反射光的位置也會因為懸臂擺動而有所改變,這就造成偏移量的產生。在整個系統中是依靠雷射光斑位置檢測器將偏移量記錄下並轉換成電的信號,以供SPM控制器作信號處理。

上圖是雷射位置檢測器的示意圖。聚焦到微懸臂上面的雷射反射到雷射位置檢測器,通過對落在檢測器四個象限的光強進行計算,可以得到由於表面形貌引起的微懸臂形變量大小,從而得到樣品表面的不同信息。


2.3反饋系統

在原子力顯微鏡/AFM的系統中,將信號經由雷射檢測器取入之後,在反饋系統中會將此信號當作反饋信號,作為內部的調整信號,並驅使通常由壓電陶瓷管制作的掃描器做適當的移動,以保持樣品與針尖保持一定的作用力。


AFM系統使用壓電陶瓷管制作的掃描器精確控制微小的掃描移動。壓電陶瓷是一種性能奇特的材料,當在壓電陶瓷對稱的兩個端面加上電壓時,壓電陶瓷會按特定的方向伸長或縮短。而伸長或縮短的尺寸與所加的電壓的大小成線性關係。也就是說,可以通過改變電壓來控制壓電陶瓷的微小伸縮。通常把三個分別代表X,Y,Z方向的壓電陶瓷塊組成三角架的形狀,通過控制X,Y方向伸縮達到驅動探針在樣品表面掃描的目的;通過控制Z方向壓電陶瓷的伸縮達到控制探針與樣品之間距離的目的。


原子力顯微鏡/AFM便是結合以上三個部分來將樣品的表面特性呈現出來的:在原子力顯微鏡/AFM的系統中,使用微小懸臂來感測針尖與樣品之間的相互作用,這作用力會使微懸臂擺動,再利用雷射將光照射在懸臂的末端,當擺動形成時,會使反射光的位置改變而造成偏移量,此時雷射檢測器會記錄此偏移量,也會把此時的信號給反饋系統,以利於系統做適當的調整,最後再將樣品的表面特性以影像的方式給呈現出來。


3.原子力顯微鏡/AFM的工作模式

原子力顯微鏡/AFM的工作模式是以針尖與樣品之間的作用力的形式來分類的。主要有以下幾種:

3.1接觸模式

將一個對微弱力極敏感的微懸臂的一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸。由於針尖尖端原子與樣品表面原子間存在極微弱的排斥力(10e-8~10e-6N),由於樣品表面起伏不平而使探針帶動微懸臂彎曲變化,而微懸臂的彎曲又使得光路發生變化,使得反射到雷射位置檢測器上的雷射光點上下移動,檢測器將光點位移信號轉換成電信號並經過放大處理,由表面形貌引起的微懸臂形變量大小是通過計算雷射束在檢測器四個象限中的強度差值(A+B)-(C+D)得到的。將這個代表微懸臂彎曲的形變信號反饋至電子控制器驅動的壓電掃描器,調節垂直方向的電壓,使掃描器在垂直方向上伸長或縮短,從而調整針尖與樣品之間的距離,使微懸臂彎曲的形變量在水平方向掃描過程中維持一定,也就是使探針-樣品間的作用力保持一定。在此反饋機制下,記錄在垂直方向上掃描器的位移,探針在樣品的表面掃描得到完整圖像之形貌變化,這就是接觸模式。


3.2橫向力(摩擦力)顯微鏡(LFM)

橫向力顯微鏡(LFM)是在原子力顯微鏡/AFM表面形貌成像基礎上發展的新技術之一。工作原理與接觸模式的原子力顯微鏡/AFM相似。


當微懸臂在樣品上方掃描時,由於針尖與樣品表面的相互作用,導致懸臂擺動,其擺動的方向大致有兩個:垂直與水平方向。一般來說,雷射位置探測器所探測到的垂直方向的變化,反映的是樣品表面的形態,而在水平方向上所探測到的信號的變化,由於物質表面材料特性的不同,其摩擦係數也不同,所以在掃描的過程中,導致微懸臂左右扭曲的程度也不同,檢測器根據雷射束在四個象限中,(A+C)-(B+D)這個強度差值來檢測微懸臂的扭轉彎曲程度。而微懸臂的扭轉彎曲程度隨表面摩擦特性變化而增減(增加摩擦力導致更大的扭轉)。雷射檢測器的四個象限可以實時分別測量並記錄形貌和橫向力數據。


3.3輕敲模式

用一個小壓電陶瓷元件驅動微懸臂振動,其振動頻率恰好高於探針的最低機械共振頻率(~50kHz)。由於探針的振動頻率接近其共振頻率,因此它能對驅動信號起放大作用。當把這種受迫振動的探針調節到樣品表面時(通常2~20nm),探針與樣品表面之間會產生微弱的吸引力。在半導體和絕緣體材料上的這一吸引力,主要是凝聚在探針尖端與樣品間水的表面張力和範德華吸引力。雖然這種吸引力比在接觸模式下記錄到的原子之間的斥力要小一千倍,但是這種吸引力也會使探針的共振頻率降低,驅動頻率和共振頻率的差距增大,探針尖端的振幅減少。這種振幅的變化可以用雷射檢測法探測出來,據此可推出樣品表面的起伏變化。


當探針經過表面隆起的部位時,這些地方吸引力最強,其振幅便變小;而經過表面凹陷處時,其振幅便增大,反饋裝置根據探針尖端振動情況的變化而改變加在Z軸壓電掃描器上的電壓,從而使振幅(也就是使探針與樣品表面的間距)保持恆定。同STM和接觸模式AFM一樣,用Z驅動電壓的變化來表徵樣品表面的起伏圖像。

在該模式下,掃描成像時針尖對樣品進行「敲擊」,兩者間只有瞬間接觸,克服了傳統接觸模式下因針尖被拖過樣品而受到摩擦力、粘附力、靜電力等的影響,並有效的克服了掃描過程中針尖劃傷樣品的缺點,適合於柔軟或吸附樣品的檢測,特別適合檢測有生命的生物樣品。


3.4相移模式(相位移模式)

作為輕敲模式的一項重要的擴展技術,相移模式(相位移模式)是通過檢測驅動微懸臂探針振動的信號源的相位角與微懸臂探針實際振動的相位角之差(即兩者的相移)的變化來成像。


引起該相移的因素很多,如樣品的組分、硬度、粘彈性質等。因此利用相移模式(相位移模式),可以在納米尺度上獲得樣品表面局域性質的豐富信息。迄今相移模式(相位移模式)已成為原子力顯微鏡/AFM的一種重要檢測技術。

3.5曲線測量

SFM除了形貌測量之外,還能測量力對探針-Zt(Zs)。它幾乎包含了所有關於樣品和針尖間相互作用的必要信息。當微懸臂固定端被垂直接近,然後離開樣品表面時,微懸臂和樣品間產生了相對移動。而在這個過程中微懸臂自由端的探針也在接近、甚至壓入樣品表面,然後脫離,此時原子力顯微鏡/AFM測量並記錄了探針所感受的力,從而得到力曲線。Zs是樣品的移動,Zt是微懸臂的移動。這兩個移動近似於垂直於樣品表面。用懸臂彈性係數c乘以ZtFc·ZtsZt-Zss。這樣能從Zt(Zs)曲線決定出力-距離關係F(s)。這個技術可以用來測量探針尖和樣品表面間的排斥力或長程吸引力,揭示定域的化學和機械性質,像粘附力和彈力,甚至吸附分子層的厚度。如果將探針用特定分子或基團修飾,利用力曲線分析技術就能夠給出特異結合分子間的力或鍵的強度,其中也包括特定分子間的膠體力以及疏水力、長程引力等。

轉自本原網


電鏡耗材供應商

江蘇紅果科技掃描電鏡商城:https://shop67542223.taobao.com/

主營掃描電鏡配件、掃描電鏡回收、二手電鏡銷售以及電鏡維修

長期回收和供應各類二手掃描電鏡SEM、FE-SEM FIB TEM等

聯繫電話:189-6268-8934

公眾號所有信息均來自網絡,如有侵權,請速與編輯聯繫刪除,謝謝合作。

最終解釋權歸China-microscope所有

江蘇紅果科技掃描電鏡商城友情贊助


相關焦點

  • 深度解析AFM(原子力顯微鏡)—上
    ,它是繼掃描隧道顯微鏡之後發明的一種具有原子級高分辨的新型儀器,可以在大氣和液體環境下對各種材料和樣品進行納米區域的物理性質包括形貌進行探測,或者直接進行納米操縱。現已廣泛應用於半導體、納米功能材料、生物、化工、食品、醫藥研究和科研院所各種納米相關學科的研究實驗等領域中,成為納米科學研究的基本工具。在原子力顯微鏡的系統中,可分成三個部分:力檢測部分、位置檢測部分、反饋系統。
  • 原子力顯微鏡(AFM)的使用和成像技巧
    昨天介紹了AFM的原理、應用等方面的知識☞從原理到應用,關於AFM你想了解的都在這裡~今天結合實例來介紹一下AFM的具體使用和成像技巧
  • 一文看懂原子力顯微鏡(AFM)
    一、 什麼是AFMAFM全稱Atomic Force Microscope,即原子力顯微鏡,它是繼掃描隧道顯微鏡
  • 掃描隧道顯微鏡(STM) VS 原子力顯微鏡(AFM)
    >掃描隧道顯微鏡的基本原理是將原子線度的極細探針和被研究物質的表面作為兩個電極,當樣品與針尖的距離非常接近(通常小於1nm)時,在外加電場的作用下,電子會穿過兩個電極之間的勢壘流向另一電極。2 AFM2.1 AFM工作原理原子力顯微鏡是一種類似於掃描隧道顯微鏡的顯微技術,它們的主要不同點是掃描隧道顯微鏡檢測的是針尖和樣品間的隧道電流,而原子力顯微鏡檢測的是針尖和樣品間的力。
  • 【乾貨】原子力顯微鏡(AFM)的使用和成像技巧
    在整個掃描成像過程之中,探針針尖始終與樣品表面保持接觸,而相互作用力是排斥力。掃描時,懸臂施加在針尖上的力有可能破壞試樣的表面結構,因此力的大小範圍在10-10~10-6N。若樣品表面柔嫩而不能承受這樣的力,則不宜選用接觸模式對樣品表面進行成像。
  • 【原子力顯微鏡知識匯總】全網最精選的AFM知識都在這了...
    從原理到應用,關於AFM你想了解的都在這裡~原子力顯微鏡(AFM)的使用和成像技巧拿到AFM數據後,你有哪些處理方式?[1] 原子力顯微鏡(AFM)簡介[2] AFM原理、操作、教程等資料大全[3] 原子力顯微鏡原理及應用[4] 原子力顯微鏡及其應用[5] 針尖下的世界——漫談原子力顯微鏡[6] Y3T167 原子力顯微鏡[7] 原子力顯微鏡/AFM各種成像模式的原理[8] 一文精通原子力顯微鏡
  • Park原子力顯微鏡完成對Molecular Vista股權投資:填補AFM化學信息...
    Molecular Vista推出全新一代的原子力顯微鏡VistaScope與紅外光誘導力顯微鏡聯用, 提供納米成像與光譜原子力顯微鏡(AFM)經過30多年的發展後,從形貌測試及其它常規功能來看已經非常成熟。
  • 顯微鏡的STM原理與AFM工作原理
    這就是STM的基本工作原理,這種運行模式稱為恆高模式(保持針尖高度恆定)。STM還有另外一種工作模式,稱為恆流模式,如下圖左邊。此時,針尖掃描過程中,通過電子反饋迴路保持隧道電流不變。為維持恆定的電流,針尖隨樣品表面的起伏上下移動,從而記錄下針尖上下運動的軌跡,即可給出樣品表面的形貌。恆流模式是STM常用的工作模式,而恆高模式僅適於對表面起伏不大的樣品進行成像。
  • 【通知公告】校分析測試中心原子力顯微鏡(AFM)開放運行通知
    校分析測試中心原子力顯微鏡(AFM)開放運行通知 校分析測試中心是我校2016年設立的校級公共分析測試平臺,是獨立建制的二級單位,現中心於2017年12月14日完成了另一套設備——原子力顯微鏡(AFM)的調試安裝,近期已面向全校開放運行
  • 原子力顯微鏡及其在聚合物凝聚態中的應用
    原子力顯微鏡至今已有多種變形,這些顯微鏡可分別用來研究材料表面形貌、力學特性、電磁特性、表面電力分布、表面熱特性及光特性等,它們已在有機、無機、半導體、光記錄材料及生物材料領域得到廣泛的應用[2]。   1 原子力顯微鏡成像原理   如圖1所示,AFM是用一端固定而另一端裝有納米級針尖的彈性微懸臂來檢測樣品表面形貌的[3]。
  • 原子力顯微鏡的原理
    (2)利用原子吸引力的變化而產生表面輪廓為非接觸式原子力顯微鏡(non-contact AFM ),探針與試片的距離約數十個? 到數百個?。  二、原子力顯微鏡的硬體架構:  在原子力顯微鏡(Atomic Force Microscopy,AFM)的系統中,可分成三個部分:力檢測部分、位置檢測部分、反饋系統。
  • 一文看懂掃描隧道顯微鏡STM/AFM
    普通原子力顯微鏡的原理示意圖  原理解釋起來並不算十分複雜,但是AFM的發明、使用與改進匯聚了大批科學家們的辛勞努力和創造性思維    1 基本原理  原子力顯微鏡的基本原理是:將一個對微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由於針尖尖端原子與樣品表面原子間存在極微弱的排斥力,通過在掃描時控制這種力的恆定,帶有針尖的微懸臂將對應於針尖與樣品表面原子間作用力的等位面而在垂直於樣品的表面方向起伏運動。
  • 30年AFM發展路漫漫 懷初心輾轉徵程而求索——訪帕克原子力顯微鏡...
    針對傳統AFM的一些不足,帕克原子力顯微鏡不斷推出True Non-Contact™模式和眾多自動化軟體等創新產品功能。希望通過我們不斷的努力,讓AFM成為一個更加友好,任何人都可以操作的通用型成像/計量工具。」
  • 原子力顯微鏡
    是德科技原子力顯微鏡是一種納米級解析度的成像技術,通過探針與樣品表面接觸進行研究。
  • 用原子力顯微鏡當鏟子?科學家發現了什麼金礦?
    原子力顯微鏡(AFM)拖動一個超鋒利的尖端穿過材料,非常接近但從未觸及表面。尖端可以感覺到表面的位置,檢測材料產生的電磁力。通過有條不紊地來回傳遞,研究人員可以繪製出一種材料的表面屬性,就像測量員有條不紊地在一塊土地上踱步以繪製該領土的地圖一樣。原子力顯微鏡可以在比一粒鹽小几千倍的尺度上描繪出一種材料的孔、突起和特性。
  • 四個小時 入門原子力顯微鏡測試
    暨掃描、透射、拉曼、xps、紅外、熱分析之後,材料人App再度開設測試課程——原子力顯微測試。
  • 華慧高芯知識庫_材料的表徵方法——雷射共聚焦原子力顯微鏡
    雷射共聚焦原子力顯微鏡具有常規光學顯微鏡、雷射顯微鏡、原子力顯微鏡三種功能,常規光學顯微鏡和雷射顯微鏡同軸,其中雷射顯微鏡採用405nm雷射光源,平面X、Y解析度能達到120nm,可進行小尺寸的樣品測試且便於原子力測試時進行樣品定位。
  • Park原子力顯微鏡完成其對Molecular Vista的股權投資
    本文轉自【美通社】;加州聖何塞2020年5月12日 /美通社/ -- 2020年4月29日,Park原子力顯微鏡宣布最終完成對美國加州聖何塞的Molecular Vista進行的股權投資。Molecular Vista作為一家AFM的生產商,該公司主要聚焦於基於光誘導力顯微鏡的納米紅外技術(IR PiFM)進行AFM紅外聯用的定量可視化研究工作,從而實現分子水平上探測和解析物質的紅外光譜特徵。 Molecular Vista推出全新一代的原子力顯微鏡VistaScope與紅外光誘導力顯微鏡聯用,提供納米成像與光譜。
  • AFM原理、操作、教程等資料大全
    而在AFM 中不能進行元素分析,但它在PhaseIma ge 模式下可以根據材料的某些物理性能的不同來提供成分的信息。圖3-4 是利用tapping 模式下得到的原子力顯微鏡相位圖像,它可以研究橡膠中填充SiO2 顆粒的微分布,並可以對SiO2 顆粒的微分布進行了統計分析。
  • 功能全面的多功能掃描探針顯微鏡AFM
    設備信息:Ntegra Solaris多功能掃描探針顯微鏡(SPM)-原子力顯微鏡(AFM)平臺2.技術參數:(1)在大氣環境下:掃描隧道顯微鏡/原子力顯微鏡(接觸+半接觸+非接觸)/橫向力顯微鏡/相位成像/力調製/力譜線/粘附力成像/磁力顯微鏡/靜電力顯微鏡/掃描電容顯微鏡/開爾文探針顯微鏡/擴展電阻成像/納米壓痕/刻蝕: 原子力顯微鏡(電壓+力)/壓電力模式/超聲原子力/外加磁場/溫度控制/氣氛控制等功能。