錢文峰研究組發現組蛋白修飾分工調控基因表達水平和基因表達噪音

2020-12-05 科學網
錢文峰研究組發現組蛋白修飾分工調控基因表達水平和基因表達噪音

 

基因表達過程依賴於轉錄因子、染色質調控因子和染色質等生物大分子在布朗運動過程中的隨機碰撞,因此,即使是基因型和分化類型完全相同的細胞在相同環境下也存在基因表達的差異,被稱為基因表達噪音。研究基因表達噪音,對研究幹細胞增殖分化、個體發育、病原菌的抗藥性以及農作物的穩產有著重要的意義,而其在人類早期胚胎發育過程中的調節機制仍不清楚。

中國科學院遺傳與發育生物學研究所錢文峰研究組計算分析了人類胚胎的單細胞轉錄組數據,發現多種組蛋白修飾分別調控了基因表達水平和基因表達噪音。富集在啟動子附近的組蛋白修飾,如H3K4甲基化,主要調節基因的平均表達水平;而富集在基因編碼區的組蛋白修飾,如H3K79甲基化,可以降低基因表達噪音,即提高同類細胞間基因表達的一致性。敲除酵母細胞中H3K79甲基化酶,降低了H3K79甲基化修飾水平,同時觀察到靶基因的在細胞間的表達差異升高。與以上發現相一致,對基因表達水平敏感的基因(如信號通路中的基因,必須基因,編碼蛋白質複合物的基因)主要受到基因編碼區組蛋白的修飾;而環境響應相關的基因主要富集了啟動子區域的組蛋白修飾。本研究揭示了組蛋白修飾在調控基因表達水平和基因表達噪音上的「分工」,為理解轉錄組進化提供了線索。

上述研究成果於2017年6月30日在線發表於PLOS Computational Biology(DOI: 10.1371/journal.pcbi.1005585)。錢文峰研究組的博士研究生吳少歡和工程師李軻為該文章的共同第一作者,吳少歡和錢文峰為共同通訊作者。該研究得到了國家973項目的資助。(來源:科學網)

相關焦點

  • 組蛋白乳酸化修飾調控基因表達
    組蛋白乳酸化修飾調控基因表達 作者:小柯機器人 發布時間:2019/10/24 16:57:06 美國芝加哥大學Yingming Zhao和Lev Becker等研究人員發現,組蛋白乳酸化修飾能夠調控基因表達。
  • 2018年Lasker基礎醫學獎:組蛋白結構及其修飾對基因表達的調控
    Michael Grunstein是研究酵母組蛋白的先驅,證明了組蛋白在基因表達調控中的重要作用:1988年與其學生韓珉在Cell上發表論文,在in vivo水平證實組蛋白在基因調控中的重要作用:他們抑制細胞內組蛋白的合成,發現轉錄抑制的基因重新被激活
  • 上海科學家揭示染色質修飾調控植物基因表達的新機制
    原標題:上海科學家揭示染色質修飾調控植物基因表達的新機制  植物沒法靠遷徙躲避不利的自然困境,它們又是如何適應環境開花結果的呢?8月6日,中科院分子植物科學卓越創新中心植物分子遺傳國家重點實驗室何躍輝研究組,和杜嘉木研究組合作,分別在國際知名期刊《自然·遺傳學》上背靠背發表研究論文。
  • Plant Molecular Biology:擬南芥基因組水平組蛋白修飾與基因表達...
    該文章通過ChIP-chip技術, 對擬南芥基因組水平組蛋白修飾與基因表達之間的關係進行了研究。組蛋白H3的賴氨酸9位點可以被乙醯化及單、二或三甲基化,這些組蛋白的修飾狀態對基因的表達以及染色質的組織結構有一定的影響。在擬南芥中,H3K9ac幾乎毫無例外地與轉錄激活相關,而H3K9me2則主要位於組成型異染色質區。
  • PNAS:科學家發現組蛋白修飾可控制基因的表達
    2013年8月7日 訊 /生物谷BIOON/ --通過在酵母中研究基因功能,近日,來自賓州州立大學(Penn State University)等處的研究者通過研究發現,組蛋白的修飾可以控制是否一個基因被允許發揮功能,這對於維持基因的表達潛力非常重要,以便來確定未來細胞的行為;相關研究刊登於國際著名雜誌PNAS上。
  • 上海生科院解析真核生物基因表達調控的新機制
    該研究揭示了染色質修飾與mRNA轉錄起始及加工的相互依存關係,兩者協同作用,以提高成熟mRNA及基因表達的水平。  生物體內編碼基因要正確執行其功能,需要經歷DNA的複製、轉錄和翻譯過程,即基因表達過程。真核生物基因表達的轉錄前水平調節是基因表達調控過程中最重要的環節,mRNA前體的轉錄起始在表觀遺傳學水平上受到多種轉錄因子以及染色質修飾與重塑的調控。
  • 我國學者揭示長鏈非編碼RNA順式調控基因表達的新模式
    LncRNA的功能分類及預測,是非編碼RNA領域一直追尋和探索的重要問題,它對於認識非編碼RNA生物學功能和存在的意義具有重要作用。沈曉驊研究組發現,lncRNA在基因組上的分布不是隨機的,並根據它們在基因組上與鄰近蛋白編碼基因的位置關係進行了分類。其中,反義長鏈非編碼RNA(divergent lncRNAs)與鄰近蛋白基因在基因組上以頭對頭的方式反向排列和轉錄。
  • 研究發現表觀遺傳學標記能調控抑癌基因的表達
    p53特異性靶基因的表達,由此指出了一種癌症表觀遺傳作用新機制,相關成果公布在《細胞》(Cell)雜誌上。在 基礎分子生物學教材中,只要提到真核基因轉錄,所引用的參考文獻許多出自於Roeder教授實驗室,他是真核生物基因轉錄調控方面的頂尖專家。 隨著研究的深入,科學家發現DNA序列不是唯一的遺傳信息,除了基因組DNA外,還有大量遺傳學信息調控著基因的表達,稱之為表觀遺傳信息。
  • 解析真核生物基因表達調控新機制
    中科院上海植物逆境生物學研究中心何躍輝課題組發現,染色質修飾與mRNA轉錄起始及加工有著相互依存關係,兩者協同作用,以提高成熟mRNA及基因表達的水平。
  • 研究介紹基因組編輯調控植物內源基因翻譯效率的實驗流程
    中國科學院遺傳與發育生物學研究所高彩霞研究組率先利用CRISPR/Cas9技術對uORF進行編輯,發現能夠顯著提高目標基因的翻譯效率,建立了利用基因組編輯調控內源基因蛋白質翻譯效率的新方法,相關成果於2018年發表在Nature Biotechnology;該方法可以培育出不含轉基因成分的基因過表達植物,為作物育種及功能基因研究提供了十分重要的技術手段。
  • 我科學家發現調控肝臟甲胎蛋白基因表達的重要分子
    第二軍醫大學基礎部章衛平教授研究組的最新研究結果,揭示了自主發現的鋅指蛋白ZBTB20是調控甲胎蛋白基因表達的關鍵分子。這一重大發現將刊登在8月5日正式出版的新一期國際著名學術期刊《美國科學院院刊》上。       甲胎蛋白作為肝癌臨床診斷最重要的生化指標,其表達調控的機制及其與肝細胞增殖之間的聯繫是長期以來備受矚目的重要科學問題。到目前為止,有關肝細胞甲胎蛋白基因出生後快速轉錄抑制及其癌變時重新激活的機理仍是未解之謎。
  • 蛋白表達噪聲實現全表達譜測量
    微觀方面,在單分子水平上,不僅提出了第三代測序技術這樣近期倍受矚目的新技術,而且從單個細胞,單個蛋白水平上分析生理過程,也正成為一個研究熱點。 來自哈佛大學醫學院化學生物學系的研究人員為了解開單細胞水平上,基因表達和調控的分子機制,進行了系列實驗研究,近期不僅獲得了許多研究成果,而且也解決了一些實驗技巧問題,在《科學》(Science)雜誌上發布文章,首次實現了對物種在整個表達譜範圍內的蛋白表達噪聲測量。
  • 生命科學學院鄭曉峰研究組揭示組蛋白泛素化和類泛素化修飾調控的...
    真核細胞的組蛋白存在著各種翻譯後修飾,包括甲基化、乙醯化、磷酸化和泛素化等,這些修飾使得DNA的複製和轉錄得到多層次的調控。組蛋白H2A是最早鑑定的泛素化修飾底物,組蛋白H2A泛素化修飾參與了基因轉錄調控和DNA損傷修復等多個生理反應過程,它受到非常嚴格而精細的調控,但有關H2A泛素化修飾調控的分子機制還有許多問題尚待解決。
  • Cell發表關於人類原始生殖細胞中基因表達網絡的表觀遺傳調控機制...
    該項工作系統、深入地研究了人類多個發育階段原始生殖細胞(PGC)的轉錄組和DNA甲基化組,發現人類原始生殖細胞不同於小鼠原始生殖細胞的關鍵獨特特徵。基因組DNA甲基化作為一種重要的表觀遺傳修飾方式,是調控細胞分化發育過程中基因表達的主要機制之一,它並不改變基因序列,但是可以遺傳給後代,容易受外界環境的影響而發生改變,在胚胎發育、幹細胞分化、癌症發生等方面發揮著重要的作用。過去人們以小鼠作為模式動物進行研究,發現了複雜基因表達調控網絡和大規模DNA甲基化重編程對於早期胚胎以及原始生殖細胞發育的調控規律。
  • Tet1調控基因表達操控減數分裂過程
    去年張毅教授研究組發現了第7種,和第8種DNA鹼基:5-胞嘧啶甲醯(5-formylcytosine),5-胞嘧啶羧基(5-carboxylcytosine),並在人體胚胎幹細胞和實驗鼠器官染色體組的DNA中發現了這兩個鹼基的蹤跡。
  • Cell:研究發現表觀遺傳學標記能調控抑癌基因的表達
    來自洛克菲勒大學,美國NIH癌症研究院等處的研究人員發表了題為「H3K4me3 Interactions with TAF3 Regulate Preinitiation Complex Assembly and Selective Gene Activation」的文章,發現一種重要的表觀遺傳學標記能調控著名抑癌基因p53特異性靶基因的表達,由此指出了一種癌症表觀遺傳作用新機制
  • Nestin基因表達調控研究進展
    1月15日,國際期刊《生物化學雜誌》(JBC) 在線發表了中科院上海生科院生化與細胞所景乃禾研究組及程樂平研究組在Nestin基因表達調控研究的一項新發現。
  • 核糖體RNA基因拷貝數變異和表達調控方面獲進展
    真核生物的核糖體,主要由4種核糖體 RNA(rRNA)和80多種核糖體蛋白組成。其中,45S rRNA基因位點通過轉錄加工可以產生18S、5.8S和25S rRNA;而5SrRNA基因位點行使5S rRNA的轉錄。隨後,25S、5.8S以及5S RNA結合核糖體蛋白形成核糖體大亞基,同時18S RNA與其他核糖體蛋白形成核糖體小亞基,最終組裝成細胞中的「蛋白加工工廠」。
  • 【中國科學報】我國科學家解析真核生物基因表達調控新機制
    中科院上海植物逆境生物學研究中心何躍輝課題組發現,染色質修飾與mRNA轉錄起始及加工有著相互依存關係,兩者協同作用,以提高成熟mRNA及基因表達的水平。相關成果2月29日在線發表於《自然—植物學》雜誌。  據了解,mRNA前體的轉錄起始在表觀遺傳學水平上受到多種轉錄因子以及染色質修飾與重塑的調控。
  • 遺傳發育所建立基因組編輯高效調控內源基因蛋白質翻譯新方法
    CRISPR/Cas9通常在基因組靶向位點造成DNA鹼基的添加或刪除,導致基因功能的缺失。近日,中國科學院遺傳與發育生物學研究所高彩霞研究組建立了一個通過CRISPR/Cas9高效調控內源mRNA翻譯的方法。該方法可通過提高蛋白質翻譯效率,增加目標基因的編碼蛋白水平。  蛋白編碼基因的表達產物一般受到轉錄、轉錄後RNA加工、蛋白質翻譯及翻譯後加工、蛋白降解等多個水平的調控。