高壓鋰離子電池發展受限?這幾款電解液添加劑帶來新生機

2021-01-10 電子產品世界

普通鋰離子池電解液在高電壓下的氧化分解限制了高壓鋰離子電池的發展,為了解決這一問題,需要設計、合成新型的耐高壓電解液或尋找合適的電解液添加劑。然而從經濟效益考慮,發展合適的電解液添加劑來穩定電極/電解液界面更加受到研究者們的青睞。本文中介紹了高壓鋰離子電池電解液添加劑方面的研究進展,並按照添加劑的種類將其分為6部分進行探討:含硼類添加劑、有機磷類添加劑、碳酸酯類添加劑、含硫添加劑、離子液體添加劑及其它類型添加劑。

本文引用地址:http://www.eepw.com.cn/article/201706/346924.htm

含硼添加劑

含硼化合物經常作為添加劑應用到不同正極材料的鋰離子電池中,在電池循環過程中,很多含硼化合物會在正極表面形成保護膜,來穩定電極/電解液之間的界面,從而提高電池性能。考慮到含硼化合物的這一獨特性能,眾多學者開始嘗試將其應用到高壓鋰離子電池中,來增強正極界面穩定性。

Li等將三(三甲基烷)硼酸酶 (TMSB)應用到以 Li[Li0.2Mn0.54Ni0.13Co0.13]O2 作正極材料的高壓鋰離子電池中,發現當有0.5%(質量分數)TMSB 添加劑存在時,循環200圈後容量保持74%(電位範圍2-4.8 V,充放電倍率為0.5 C),而沒有添加劑存在時,容量保持僅為19%。

為了解TMSB對正極表面修飾的作用機制,ZUO 等將TMSB添加到LiNi0.5Co0.2Mn0.3O2石墨全電池中,並分別對正極材料進行了XPS與TEM分析,得到下圖所示的結論:在沒有添加劑存在時,隨著循環次數的增加,會逐漸在正極表面形成一層有LiF存在的正極電解液界面(CEI)膜,這層膜較厚而且阻抗較高;加入TMSB後,缺電子的含硼類化合物會提高正極表面 LiF 的溶解度,形成的SEI膜較薄,阻抗較低。

除了TMSB ,現如今應用到高壓鋰離子電池中的含硼類添加劑還包括雙草酸硼酸鋰(LiBOB)、雙氟草酸硼酸鋰 (LiFOB)、四甲基硼酸酯(TMB) 、硼酸三甲酯(TB)以及三甲基環三硼氧烷等,這些添加劑在循環過程中會比電解液溶劑優先被氧化,形成的保護性膜覆蓋到正極表面,這層保護性膜具有良好的離子導電性,能抑制電解液在隨後的循環中發生氧化分解以及正極材料結構的破壞,穩定電極/電解液界面,並最終提高高壓鋰離子電池的循環穩定性。

有機磷添加劑

根據前線軌道能量與電化學穩定性的關係:分子的 HOMO 越高,軌道中的電子越不穩定,氧化性越好:分子的 LUMO 越低,越容易得電子,還原性越好。

因此,通過計算添加劑分子與溶劑分子的前線軌道能量,可以從理論上判斷添加劑的可行性。SONG 等利用Gaussian 09 程序,採用密度泛函理論(DFT) 在 B3LYP/6-311+(3df,2p) 水平下分別對三(2,2,2-三氟乙基)亞磷酸酯 (TFEP) 、三苯基亞磷酸酯 (TPP) 、三(三甲基矽基)亞磷酸酯(TMSP) 以及亞磷酸三甲酯(TMP) 類添加劑以及溶劑分子進行優化,得到相應的優勢構象,並對其進行了前線軌道分析。下圖可以看出,這些亞磷酸酯化合物的 HOMO 能量遠高於溶劑分子,表明亞磷酸酯類化合物比溶劑分子具有更高的氧化性,在正極表面能優先發生電化學氧化,形成SEI膜覆蓋在正極表面。

除了亞磷酸酯類添加劑,目前所用的有機磷類添加劑還包括磷酸酯類化合物。 XIA 等將三烯丙基磷酸酯(TAP)添加劑應用到 Li[Ni0.42Mn0.42Co0.16]O2 (NMC442)石墨全電池中,發現當有TAP存在時會顯著提高庫侖效率,長時間循環後,仍然具有很高的容量保持。XPS結果表明,在循環過程中,烯丙基可能會發生交聯電聚合反應,得到的產物覆蓋到電極表面,形成均勻的SEI膜。

碳酸酯類添加劑

含氟皖基 (PFA) 化合物具有很高的電化學穩定性,同時具備疏水性與疏油性的特性,當 PFA 添加到有機溶劑中,疏溶劑的PFA會凝聚到一起形成膠團。由於PFA的這一特性,ZHU等嘗試將全氟烴基(下圖中TEM-EC、PFB-EC、PFH-EC 、PFO-EC)取代的碳酸亞乙酯添加到高壓鋰離子電池電解液中,對於Li1.2Ni0.15Mn0.55Co0.1O2石墨電池,當加入0.5% (質量分數)的PFO-EC後,電池在長時間循環過程中性能明顯提高,這主要是因為添加劑在循環過程中形成了雙層的鈍化膜,同時減少電極表面的降解與電解液的氧化分解。

含硫添加劑

近年來,將有機磺酸酯作為添加劑應用到鋰離子電池中的報導很多。PIRES將 1,3-丙磺酸內酯 (PS) 加入到高壓鋰離子電池電解液中,有效抑制了電極表面副反應的發生以及金屬離子的溶解。ZHENG 等用二甲磺醯甲烷(DMSM) 作為高壓 LiNil/3Col/3Mn1/3O2石墨電池電解液添加劑,XPS、SEM以及TEM分析結果表明,MMDS的存在對正極SEI膜具有很好的修飾作用,即使在高壓下也能顯著降低電極/電解液界面阻抗,提高正極材料的循環穩定性。此外,HUANG等分別研究了三氟甲基苯硫醚 (PTS)添加劑在高壓鋰離子電池室溫及高溫下的循環性能。理論計算數據與實驗結果分析得出,在循環過程中PTS 比溶劑分子優先被氧化,形成的SEI膜提高了電池在高電壓下的循環穩定性。此外,一些噻吩及其衍生物也被考慮作為高壓鋰離子電池添加劑使用,當加入這些添加劑後,會在正極表面形成聚合物膜,避免了電解液在高壓下的氧化分解。

離子液體添加劑

離子液體是一種低溫熔融鹽,因其具備蒸汽壓低、電導率高、不易燃、熱穩定及電化學穩定性高等優點而被廣泛應用到鋰離子電池中。

目前已報導的文獻主要是將純離子液體作為普通鋰離子電池電解液使用,中國科學院過程工程研究所李放放課題組考慮到離子液體獨特的物理化學性質,嘗試將其作為添加劑應用到高壓鋰離子電池中,如分別將4種烯烴取代咪唑雙(三氟甲基磺醯)亞胺離子液體添加到了1.2 mol/L的LiPF6/EC/EMC電解液中,並對其進行了循環性能測試,見下圖。結果表明,首次充放電效率都明顯提高,尤其添加 3% (質量分數)的[AVlm][TFSI] 離子液體時,電池的放電容量和循環性能最好。

此外,BAE 等用雙(三氟甲基磺醯)亞胺三乙基 (2-甲氧乙基)季磷鹽 (TEMEP-TFSI)作有機電解液添加劑,發現TEMEP-TFSI可以有效提高 Li/LiMn1.5Ni0.5O4半電池的容量保持率,同時可降低電解液的可燃性。TEM和XPS 的結果表明,添加劑在LNMO表面形成了穩定保護膜,有效抑制了電解液的分解。

其他添加劑類型

除了上面提到的幾種類型的添加劑外,CHEN等嘗試用有機矽類化合物作高壓鋰離子電池添加劑,當向電解液中加入0.5% (質量分數)的烯丙氧基三甲矽 (AMSL)時,電池的循環性能與熱穩定性明顯提高;SEM、XPS 及 FTIR 分析結果表明,AMSL會在正極表面形成保護性膜:另外通過對石墨負極進行循環性能以及 CV 測試,發現加入添加劑後放電容量會輕微增加,與不含添加劑時的 CV曲線相比,加入AMSL後會在原來還原峰,相對較高的電壓處出現一個新的還原峰,表明 AMSL會優先被還原,形成穩定的SEI 膜覆蓋到石墨負極的表面,抑制了電解液在電極表面進一步的還原分解,增強了循環穩定性,由於AMSL能同時在LiNi0.5Mn1.5O4與石墨負極形成SEI膜來穩定電極界面,因此其有望成為一種理想的添加劑得到更進一步的應用。一些苯的衍生物也可用作高壓鋰離子電池添加劑,KANG 等將 1,3,5-羥基苯 (THB) 加入到碳酸酯類電解液中,在高溫、高壓下表現出了良好的熱穩定性和電化學穩定性。

總結

傳統使用的有機碳酸酯類電解液在高電壓下持續的氧化分解以及正極材料過渡金屬離子的溶解問題,限制了高壓正極材料的容量發揮和應用,發展高壓電解液添加劑是改善電池性能既經濟又有效的方法。現今所報導的高壓添加劑在循環過程中一般會比溶劑分子優先氧化,在正極表面形成鈍化膜,穩定電極/電解液界面,最終實現電解液能在高壓下穩定存在。

從目前公開報導的國內外研究進展來看,在高壓電解液的開發方面,引入高壓添加劑一般可以獲得 4.4-4.5 V 的電解液。但是對於富鋰、磷酸釩鋰、高壓鎳錳等正極材料,由於可充電電壓達到了4.8V 甚至5V 以上,必須開發可耐更高電壓的電解液才能獲得更高的能量密度。

相關焦點

  • 【乾貨】高壓鋰離子電池電解液添加劑詳解及應用舉例
    由於PFA的這一特性,ZHU等嘗試將全氟烴基(下圖中TEM-EC、PFB-EC、PFH-EC 、PFO-EC)取代的碳酸亞乙酯添加到高壓鋰離子電池電解液中,對於Li1.2Ni0.15Mn0.55Co0.1O2石墨電池,當加入0.5% (質量分數)的PFO-EC後,電池在長時間循環過程中性能明顯提高,這主要是因為添加劑在循環過程中形成了雙層的鈍化膜,同時減少電極表面的降解與電解液的氧化分解。
  • 新宙邦:添加劑是鋰離子電池電解液的重點研究方向
    公告顯示,目前,添加劑的開發是鋰離子電池電解液領域的重點研究方向,其可以針對性的解決當前鋰離子電池普遍存在的循環壽命較短和安全隱患等行業共性技術難題,公司研發的電解液添加劑能非常有效的改善電池循環和高低溫等性能。
  • 鋰離子電池電解液超全面介紹
    我們知道,常規的鋰離子電池採用的都是非水有機溶劑,當電池由於內部短路而發熱時,電解液受熱分解產生氣體,輕則電池膨脹,重則導致電池爆炸。那麼「神秘「的電解液到底是什麼呢?小編通過搜尋各方資料整理了關於電解液的相關知識,接下來就聽小編來一一解析。
  • 鋰離子電池電解液添加劑綜述-​Additives for Insertion/deinsertion-type Anodes
  • 鋰離子電池電解液添加劑FEC和VC的成膜機理分析
    FEC和VC成膜機理分析石墨負極在嵌鋰狀態下的電位接近0V,已經超過了常規碳酸脂類電解液的穩定電壓範圍,因此電解液會在負極表面分解產生一層固態的分解產物,這就是我們常說的SEI膜,這層界面膜不僅能夠有效地阻止電解液進一步在電解液在負極表面發生分解,還能夠傳到Li+,因此SEI膜對於鋰離子電池的電化學性能具有重要的影響。
  • 鋰離子電池電解液的相關製備方法
    作為鋰離子電池的「血液」——電解液,它承擔著傳導鋰離子的重任,是鋰離子電池獲得高能量密度、低阻抗的關鍵;本系列就從電解液的製作過程入手,開始逐步的展開,為大家介紹四大主材的製作過程。2,提純:對於使用的有機原料分別採取提純處理已達到鋰離子電池電解液使用的標準,在此,需要檢驗的項目有純度、水含量以及主含量等等。
  • 【乾貨】鋰離子電池電解液超全面介紹
    事後三星電子中國區稱,在中國地區銷售的Galaxy Note 7供應商是ATL,採用的並非是由供應商三星SDI製造的會發生爆炸的電池。據SDI內部人士的評論分析,手機電池起火的原因是由於電池R角位出現了導致正負極短路的問題,電池採用卷繞工藝製作,使用的是常規的液態鋰離子電池電解液。好了,關鍵來了!
  • 特斯拉獲新電池專利,利用電解液添加劑提升電池性能
    通過調整電解液添加劑的組成以及配比,鋰離子電池的使用壽命和性能將能得到提升。與此同時採用這一方法的新型電池系統,將適用於包括汽車、電網儲能在內的不同儲能應用場景。事實上今年以來,特斯拉在電池方面便動作頻頻。
  • VC添加劑在鋰離子電池中的作用機理分析
    石墨是目前鋰離子電池主流的負極材料,石墨的嵌鋰電勢與金屬Li接近,因此能夠將鋰離子電池高電壓的優勢發揮的淋漓盡致,但是這也帶來了一個問題——電解液的不穩定,目前常規的碳酸酯類電解液在1.5V以下就會發生還原分解,例如電解液中常見的EC溶劑大約在1.2V(vs Li/Li+)左右開始分解,電解液的分解過程會消耗鋰離子電池的活性Li,同時在負極表面生成一層惰性層,也就是我們常說的
  • 2020年中國鋰離子電池電解液行業回顧與展望
    1、行業運行情況回顧 1.1電解液出貨量受電池端影響:上半年低迷,下半年復甦超預期 按應用領域分類,鋰離子電池主要分為汽車用動力電池(EV Lib)、小型類鋰離子電池(Small Lib)和儲能用鋰離子電池(ESS Lib)
  • 讓鋰離子電池1500次循環容量保持90%!神奇的二氟磷酸鹽添加劑
    文/憑欄眺 在鋰離子電池內部電化學反應主要發生在電極/電解液界面上,由於鋰離子電池電壓較高,因此碳酸酯類電解液在正負極表面實際上並不穩定,在電池循環過程中會持續的發生副反應,導致電池容量和性能的衰降,而電解液添加劑是提高界面穩定性,減少副反應的有效方法。
  • LiTFSI作為電解液添加劑表現出優異性能
    近日,德國HIU實驗室的Varvara Sharova等為醯亞胺類鋰鹽的應用找到了新的出路——作為電解液添加劑。  鋰離子電池石墨負極的電勢比較低,會導致電解液在其表面發生分解,形成鈍化層,也就是我們常說的SEI膜。SEI膜能夠防止電解液繼續在負極表面發生分解,因此SEI膜的穩定性對於鋰離子電池的循環穩定性有著至關重要的影響。
  • 電解液在鋰離子電池充放電過程中的行為研究
    鋰離子電池主要由正極、負極、隔膜和電解液,以及結構件等部分組成,在鋰離子電池的外部,通過導線和負載等,將負極的電子傳導到正極,而在電池內部,正負極之間則通過電解液進行連接,在放電的時候,Li+通過電解液從負極擴散到正極,嵌入到正極的晶體結構之中。
  • 關於電池電解液檢測
    鋰離子電池四大主要材料包括:正極材料、負極材料、電池隔膜、電解液,其中電解液在鋰電池正、負極之間起到傳導離子的作用,是鋰離子電池獲得高電壓、高比能等優點的保證。它的性能直接決定了鋰電池的電導率、容量和輸出電壓,並保證工作中發生的化學反應是可逆的。
  • 全面發展,高壓超級快充寬溫電解液!
    文/憑欄眺 隨著電動汽車續航裡程的持續提升,整車廠商對於動力電池能量密度和充電速度的要求也越來越高,為了滿足這些需求,下一代動力電池將向著高電壓、快充和寬溫等方面發展,全面滿足不同的需求。
  • 乾貨| 鋰離子動力電池及其關鍵材料的發展趨勢
    進一步提高電池的能量密度是動力電池發展的主題和趨勢, 而關鍵材料是其基礎. 本文從鋰離子動力電池正、負極材料, 隔膜及電解液等幾個方面, 對鋰離子動力電池關鍵材料的發展趨勢進行評述.
  • 天賜材料、湖南航盛、香河崑崙3家企業帶來全新電解液產品
    摘要 天賜材料、湖南航盛、香河崑崙3家企業帶來全新電解液產品,申報了此次高工金球獎年度好產品獎,展現出了高壓穩定、兼顧高低溫、高浸潤性、低成本、快充等產品優勢。 其中,天賜材料、湖南航盛、香河崑崙3家企業帶來全新電解液產品,申報了此次高工金球獎年度好產品獎,展現出了高壓穩定、兼顧高低溫、高浸潤性、低成本、快充等產品優勢。
  • 高壓鋰離子電池的發展現狀詳解
    隨著全球多樣化的發展,我們的生活也在不斷變化著,包括我們接觸的各種各樣的電子產品,那麼你一定不知道這些產品的一些組成,比如高壓鋰離子電池。隨著用電設備對鋰離子電池容量要求的不斷提高,人們對鋰離子電池能量密度提升的期望越來越高。特別是智慧型手機、平板電腦、筆記本電腦等各種便攜設備,對體積小、待機時間長的鋰離子電池提出了更高的要求。
  • 「遠瞻智庫分享」動力電池深度報告之中遊篇:電池血液-電解液
    其作用是保證電池在充放電過程中有充足的鋰離子實現充放電循環,目前使用最為廣泛的溶質是六氟磷酸鋰; 溶劑成本佔比約30%,質量佔比達80%以上,目前主要使用的是碳酸酯類溶劑; 添加劑成本佔比10%,是電解液競爭力差異化的主要來源之一。固態電解質是電解液行業未來的發展方向之一。固態鋰離子電池是採用固態電解質的鋰電池。
  • EES | 高電壓穩定的氟代碸電解液,有望用於5V鋰離子電池
    在電動汽車領域中,鋰離子電池的應用受限於其安全性、價格、以及能量密度無法滿足續航需求。為提高電池能量密度,一種方法是提高材料的比容量,另一種策略是提高工作電壓至 5V。這類材料包括橄欖石型 LiNiPO4 和 LiCoPO4,以及尖晶石型 LiNi0.5Mn1.5O4  (LNMO)  和  LiCoMnO4。