衝刺19年高考數學,典型例題分析260:餘弦定理有關的題型講解

2021-01-08 吳國平數學教育

典型例題分析1:

在△ABC中,角A、B、C的對邊分別為a、b、c,a(4﹣2√7cosB)=b(2√7cosA﹣5),則cosC的最小值為   .

考點分析:

餘弦定理.

題幹分析:

第一步:將原式變形,利用餘弦定理,將角化為邊;

第二步:用a,b表示c;

第三步:寫出cosC的表達式,並用a,b表示;

第四步:利用基本不等式放縮,即可獲取定值.

典型例題分析2:

在△ABC中,內角A,B,C的所對邊分別為a,b,c.已知a2+b2+5abcosC=0,sin2C=(7/2)sinAsinB.

(Ⅰ)求角C的大小;

(Ⅱ)若△ABC的面積為√3/2,求sinA的值.

考點分析:

餘弦定理.

題幹分析:

(Ⅰ)由余弦定理,正弦定理化簡已知可得:7(a2+b2)=5c2,c2=7ab/2,從而利用餘弦定理可求cosC=﹣1/2,結合範圍C∈(0,π)即可求得∠C的值.

(Ⅱ)利用三角形面積公式可求ab=2,由(Ⅰ)知,c2=7,a2+b2=5,聯立可求a,b的值,利用正弦定理即可求得sinA的值。

相關焦點

  • 餘弦定理知識點總結及典型例題
    餘弦定理的知識點及典型例題(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,歡迎轉發幫助更多學子!!!)餘弦定理和正弦定理是高中階段解三角形的理論基礎,上期分享了正弦定理的基礎知識和常見題型,本期小編和大家分享一下餘弦定理的基礎知識和基本題型及常用解題技巧。一、基礎知識二、典型例題題型一、餘弦定理的基本概念總結:(1)在解三角形的時候,我們什麼時候選擇正弦定理什麼時候選擇餘弦定理呢?
  • 衝刺19年高考數學,專題複習278:正弦定理有關的典型例題 - 吳國平...
    考點分析;正弦定理.題幹分析:由正弦定理將sin2B=2sinAsinC,轉換成b2=2ac,根據餘弦定理化簡得:a2+c2﹣5ac/2=0,同除以c2,設c2=t,解得t的值,根據條件判斷a/c的值.
  • 衝刺19年高考數學,典型例題分析263:雙曲線有關的題型講解
    典型例題分析1:焦點為(6,0)且與雙曲線x2/2﹣y2有相同漸近線的雙曲線的方程為 (  )A.x2/24﹣y2/12=1B.y2/12﹣x2/24=1考點分析:雙曲線的簡單性質.題幹分析:設所求的雙曲線方程是x2/2﹣y2=K,由焦點(6,0)在x軸上,知 k>0,截距列出方程,求出k值,即得所求的雙曲線方程.
  • 在高考數學,掌握正弦定理和餘弦定理,才能拿下解直角三角形
    越是接近高考,我們更要認真對待高考數學複習課,做到精講精練,提高複習效率。如考生可以從典型的基礎問題或課本例題入手,通過一題多解、觸類旁通,或一題多變和舉一反三,進行有效的針對性複習,幫助自己查漏補缺,不斷提高學習成績。
  • 初中數學:《勾股定理》典型例題分析講解!考試必考,務必收藏好
    初中數學:《勾股定理》典型例題分析講解!考試必考,務必收藏好「勾股定理」是初中數學當中非常重要的一項內容,是幾何、函數等內容的分支,串聯著這些考點內容,因此想要學好勾股定理,肯定還是要多花一些心思的。正所謂「幾何思維」,如果解答類似的題型,沒有自己的想法的話,那麼肯定是難以取得好成績的,所以同學們必須要找準自己的薄弱點,並做針對性的訓練。其實,勾股定理本身的定義不難理解,直角三角形兩條直角邊的平方和等於斜邊的平方,相信很多同學都知道這個公式。
  • 衝刺2019年高考數學,典型例題分析76:與函數零點定理有關的題型
    典型例題分析1:若f(x)為奇函數,且x0是y=f(x)﹣ex的一個零點,則下列函數中,﹣x0一定是其零點的函數是(  )A.y=f(﹣x)e﹣x﹣1B.y=f(典型例題分析2:函數y=lnx/2+x-1/x-2的零點所在的區間是(  )A. (1/e,1) B.(1,2) C.(2,e) D.
  • 衝刺19年高考數學,典型例題分析203:球的體積和表面積
    典型例題分析1:故選:D.考點分析;球的體積和表面積.題幹分析:利用等體積轉換,求出PC,PA⊥AC,PB⊥BC,可得PC的中點為球心,球的半徑,即可求出三稜錐P﹣ABC外接球的體積.典型例題分析2:考點分析:球的體積和表面積.
  • 衝刺19年高考數學,典型例題分析261:等比數列的題型講解
    典型例題分析1:在正項等比數列{an}中,a1008a1009=1/100,則lga1+lga2+…+lga2016=(  )A.2015B.2016C.﹣2015D.﹣2016解:由正項等比數列{an}的性質可得
  • 衝刺2018年高考數學,典型例題分析23:餘弦定理和正弦定理
    考點分析:餘弦定理;正弦定理.題幹分析:(Ⅰ) 在△APC中,由余弦定理得AP2﹣4AP+4=0,解得AP=2,可得△APC是等邊三角形,即可得解.(Ⅱ) 法1:由已知可求∠APB=120°.利用三角形面積公式可求PB=3.進而利用餘弦定理可求AB,在△APB中,由正弦定理可求sin∠BAP的值.
  • 衝刺19年高考數學,典型例題分析235:三角函數有關的題型講解
    典型例題分析1:函數f(x)=cos(π/2﹣x)的最小正周期是   .解:函數f(x)=cos(π/2﹣x)=sinx∴f(x)的最小正周期是2π.考點分析:三角函數的周期性及其求法.題幹分析:化函數f(x)=cos(π/2﹣x)=sinx,寫出它的最小正周期.
  • 衝刺19年高考數學,典型例題分析220:二項式定理的應用
    典型例題分析1:二項式(1/x﹣x)9的展開式中x3的係數是(  )A.84B.﹣84C.126D.﹣126考點分析:二項式係數的性質.題幹分析:根據二項式展開式的通項公式,令x的指數等於3,即可求出展開式中x3的係數.典型例題分析2:考點分析:二項式係數的性質.題幹分析:求定積分得到a值,代入(1﹣x)3(1﹣a/x)3,展開兩數差的立方公式後即可求得答案.
  • 衝刺2019年高考數學,典型例題分析58:與程序框圖有關的題型
    典型例題分析1:如圖所示程序框圖,其功能是輸入x的值,輸出相應的y值,若要使輸入的x值與輸出的y值相等,則這樣的x值有(  )考點分析:典型例題分析2:如圖是秦九韶算法的一個程序框圖,則輸出的S為(  )解:由秦九韶算法,S=a0+x0(a1+x0(a2+a3x0)),故選:C.
  • 衝刺2019年高考數學,典型例題分析7:立體幾何相關的客觀題講解
    典型例題分析1:在稜長為2的正方體A1B1C1D1﹣ABCD中,則點B到平面A1B1CD的距離是   .考點分析:稜柱的結構特徵.題幹分析:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出點B到平面A1B1CD的距離.典型例題分析2:邊長為1的正方體ABCD﹣A1B1C1D1若將其對角線AC1與平面α垂直,則正方體ABCD﹣A1B1C1D1在平面α上的投影面積為   .
  • 數學解三角函數的必備知識+典型例題,高考都在考,務必掌握吃透
    三角函數這一章節的內容在高考中還是比較重要的一個章節,在高考數學中的各類題型中都是會考到的,所以同學們還是需要好好地去掌握住這一章節的內容。三角函數必備的知識點有四點,第一點是直角三角形中各元素之間的關係;第二點是斜三角形中各元素間的關係;第三點是三角形任何一邊的平方等於其他兩邊平方的和減去這兩邊與它們夾角的餘弦的積的兩倍,即餘弦定理;第四點是解三角形的相關知識點,這些都是解三角函數的基礎知識點,要是連這四點都沒有掌握住的話,那麼又怎麼可能去解三角函數呢?
  • 衝刺19年高考數學,典型例題分析256:圓有關的圓錐曲線
    典型例題分析1:已知△ABC的外接圓方程為x2+y2=5,直線AC:y=﹣1(點A在第四象限),設AB中點為M,AC中點為N,若|AN|=|MN|,則直線AB的斜率為   .題幹分析:由題意和距離公式解方程組可得B的坐標,進而由斜率公式可得.典型例題分析2:已知b,r∈{1,2,3,4},則直線y=x+b與圓x2+y2=r有公共點的概率為   .
  • 衝刺2019年高考數學,典型例題分析108: 與平面向量相關高考題
    典型例題分析1:考點分析:平面向量數量積的運算;正弦函數的圖象.題幹分析:由f(x)=2sin(πx/6+π/3)=0,結合已知x的範圍可求A,設B(x1,y1),C(x2,y2),由正弦函數的對稱性可知B,C兩點關於A對稱即x1+x2=8,y1+y2=0,代入向量的數量積的坐標表示即可求解。典型例題分析2:考點分析:平面向量的坐標運算.
  • 衝刺19年高考數學,典型例題分析264:三角函數有關的題型
    典型例題分析1:在平面直角坐標系xOy中,角θ的終邊經過點P(﹣2,t),且sinθ+cosθ=√5/5,則實數t的值為   .考點分析:任意角的三角函數的定義.題幹分析:根據三角函數的定義求出sinθ,cosθ,解方程即可得到結論.典型例題分析2:已知sin2α=2/3,則tanα+1/tanα=(  )A.1B.2C.4D.3考點分析:二倍角的正弦;三角函數的化簡求值.
  • 衝刺19年高考數學,典型例題分析149:與複數有關的題型
    典型例題分析1:已知複數z滿足iz=3﹣4i(其中i為虛數單位),則|z|=   .解:複數z滿足iz=3﹣4i(其中i為虛數單位),∴﹣iiz=﹣i(3﹣4i),∴z=﹣3i﹣4.則|z|=5.考點分析:複數代數形式的乘除運算.題幹分析:利用複數的運算法則、模的計算公式即可得出.
  • 衝刺2019年高考數學,典型例題分析89:與複數有關的題型講解
    典型例題分析1:複數z1,z2在複平面內對應的點關於直線y=x對稱,且z1=3+2i,則z2=(  )A.3﹣2i B.2﹣3i C.﹣3﹣2i D.2+3i解:複數z1在複平面內關於直線y=x對稱的點表示的複數z2=2+3i,故選:D.
  • 2019高考數學:解三角形——正弦定理和餘弦定理的解題技巧和模型
    解三角形——正弦定理和餘弦定理的解題技巧和模型正弦定理、餘弦定理的每一個等式中都包含三角形的四個元素(三角形有三個角和三條邊,三角形的邊與角稱為三角形的元素),如果其中三個元素是已知的(至少要有一個元素是邊),那麼這個三角形一定可解.關於斜三角形的解法,根據已知條件及適用的定理,