衝刺19年高考數學,典型例題分析261:等比數列的題型講解

2021-01-11 吳國平數學教育

典型例題分析1:

在正項等比數列{an}中,a1008a1009=1/100,則lga1+lga2+…+lga2016=(  )

A.2015

B.2016

C.﹣2015

D.﹣2016

解:由正項等比數列{an}的性質可得:

a1a2016=a2a2015=…=a1008a1009=1/100,

則lga1+lga2+…+lga2016=lg(a1a2…a2015a2016)

=lg(1/100)1008=﹣2016.

故選:D.

考點分析:

等比數列的通項公式.

題幹分析:

由正項等比數列{an}的性質可得:a1a2016=a2a2015=…=a1008a1009,再利用對數的運算性質即可得出.

典型例題分析2:

在等比數列{an}中,a3a7=8,a4+a6=6,則a2+a8=   .

考點分析:

等比數列的通項公式.

題幹分析:

設等比數列{an}的公比為q,由a3a7=8=a4a6,a4+a6=6,解得a4=2,a6=4;a4=4,a6=2.可得q2.於是a2+a8=a4/q2+a6q2.

典型例題分析3:

在等比數列{an}中,a1=8,a4=a3a5,則a7=(  )

A.1/16

B.1/8

C.1/4

D.1/2

解:由等比數列的性質可知,a4=a3a5=a42

∵a4≠0

∴a4=1

∵a1=8

∴a1·a7=a42=1

∴a7=1/8

故選B

考點分析:

等比數列的性質.

題幹分析:

由等比數列的性質可知,a4=a3a5=a42可求a4,然後由a1·a7=a42可求.

解題反思:

等比數列是高考的熱點內容,既考查等比數列的基本概念、基本性質和基本運算,也考查等比數列與其他知識的綜合問題。

在以往的高考中一般在選擇題、填空題中考查等比數列的定義、基本量的運算和特有性質,而在解答題中考查等比的判斷與證明、求通項公式、與函數及不等式的綜合考查等。

相關焦點

  • 衝刺19年高考數學,典型例題分析142:等比數列有關的題型
    典型例題分析1:已知正項等比數列{an}中,a1=1,其前n項和為Sn(n∈N*),且1/a1-1/a2=2/a3,則S4=   .題幹分析:由題意先求出公比,再根據前n項和公式計算即可.典型例題分析2:在公比為q且各項均為正數的等比數列{an}中,Sn為{an}的前n項和.若a1=1/q2,且S5=S2+2,則q的值為   .考點分析:等比數列的前n項和.
  • 衝刺19年高考數學,典型例題分析262:數列求和的題型
    典型例題分析1:已知數列{an}的通項公式為an=n+cos(nπ/2),Sn為其前n項和,則S100=   .考點分析:數列的求和.題幹分析:通過記bn=cos(nπ/2)可知數列{bn}是以4為周期的周期數列,且b1+b2+b3+b4=0,進而利用等差數列的求和公式計算即得結論.
  • 2019高考衝刺:等比數列解題技巧—實戰篇(一)
    2019高考衝刺:等比數列解題技巧—實戰篇(一)(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)上期詳細介紹了等比數列的概念和基本性質,熟練理解和掌握等比數列的概念和性質是解答等比數列相關問題的基礎,在此基礎上,輔以適當的練習,學好等比數列就會變得很簡單。本期開始逐步介紹等比數列的常見題型。題型一、等比數列的判斷等比數列作為兩大基本數列之一,是高考必考,也是我們在學習中必須掌握的知識。
  • 衝刺2019年高考數學,典型例題分析114: 等比數列有關的求和問題
    典型例題分析1:若公比為2的等比數列{an}滿足a7=127a24,則{an}的前7項和為.考點分析:等比數列的前n項和.題幹分析:利用等比數列的通項公式列出方程,求出首項,再由等比數列的前n項和公式能求出數列的前7項和.
  • 高考數學——「數列」部分專講,10道例題講解應試技巧+解題思維
    在歷年高考數學的壓軸題中,有關數列的題型一直佔據著不可或缺的地位,往往讓很多同學無所適從.最典型的便是數列放縮題型,其內在的估計思想更是數學思想中的精髓.對於高中數學而言,數列這一部分內容主要包括數列通項與數列求和.又由於數列可視為一類特殊的函數,則其函數性質也會偶爾一展風採.
  • 吳國平:2018年高考數學準備戰,衝刺數列求和問題
    從2017年高考數學及歷年試題分布來看,數列求和問題一直高考數學的熱點和重點。這對於參加2018年高考的考生來說,是一個很好的啟發,可以提早準備,為高考打下一個紮實基礎。數列作為高中數學的重要學習內容之一,又是學習高等數學的基礎,它是初等數學與高等數學的一個重要銜接點。高考對數列的考查比較全面,可以說每年都不會遺漏。
  • 衝刺2019年高考數學,典型例題分析32:與等比數列有關的解答題
    已知數列{an}中,a1=2,且2an=an-1+1(n≥2,n∈N+).(I)求證:數列{an﹣1}是等比數列,並求出數列{an}的通項公式;(Ⅱ)設bn=n(an﹣1),數列{bn}的前n項和為Sn,求證:1≤Sn<4.
  • 2020年高考加油,數列有關的題型講解分析
    典型例題分析1:已知等差數列{an}的前n項和為Sn,若a3=9﹣a6,則S8=   .解題反思:本題考查等差數列的求和公式和性質,屬基礎題.典型例題分析2:設等比數列{an}的公比q=1/2,前n項和為Sn,則S8/a2=   .考點分析:等比數列的性質.題幹分析:利用等比數列的通項與求和公式,即可求出S8/a2.
  • 2020年高考數學如何複習?可以從數列開始
    從歷年高考數學題型來看,數列可以和函數、方程、不等式、三角等相關知識進行「串聯」,形成更為複雜的綜合性問題;或是結合實際生活例子,考查考生運用數列知識解決實際問題的能力。要想學好數列基礎知識內容,我們要學會從多角度去看待數列。
  • 衝刺2018年高考數學,典型例題分析67:數列求和相關綜合題型 - 吳國...
    (1)求數列{an}的通項公式;(2)若{bn}為等差數列,對任意的n∈N*,都有Sn>Tn.證明:an>bn;(3)若{bn}為等比數列,b1=a1,b2=a2,求滿足(an+2Tn)/(bn+2Sn)=ak(k∈N*)的n值.
  • 高中數學等比數列求和公式拓展小技巧
    高中數學必修5----等比數列的求和公式拓展,等比數列求和公式原型是這樣的【點撥】等比數列的求和公式可以理解為指數函數的係數和常數項互為相反數
  • 高考數學必考:等差等比數列
    數列是高中數學的重要內容之一,也是高考的必考考點。等差等比數列作為兩種很特殊的數列,歷年來一直都是高考考查的熱點內容。所以掌握數列對同學們來說非常重要,那麼如何快速掌握數列的相關知識,並且能夠靈活運用呢?
  • 等比數列解題技巧—實戰篇
    等比數列解題技巧—實戰篇二(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)前面介紹了三種等比數列的常見題型,本期繼續介紹等比數列另外幾種常見題型。題型四、等比數列的性質無論是等比數列還是等差數列,在考查性質時都要特別留意各項腳標之間的關係,而且要把等差數列和等比數列的性質區分開,不要搞混淆了。等差數列是將兩項求和,等比數列是將兩項求積。分析:等比數列的性質可以類比等差數列來學習,這樣能夠有效地防止將兩個數列的性質搞混淆。
  • 高考數學題型全歸納
    高考數學題型全歸納學好數學要多做題,多做題能熟能生巧,但是多做題並不等於濫做題、盲目做題,而是要多做典型有代表性的題,下文有途網小編給大家整理了《高考數學題型全歸納》。
  • 等差數列與等比數列判定,利用數列基本性質,高考重點考題
    數列做為我們高中數學一塊非常重要的內容,並且數列的內容常常是利用各種公式的變換來求解數列的得數或是判定數列的性質,數列的考察往往比較的綜合,並且也有一定的難度,數列常常還可以作為載體,與函數解析式結合在一起進行考察,所以這也成了我們高考考題中的大熱題目,因為通過一道題便可以考察很多的數學知識點
  • 衝刺19年高考數學,典型例題分析263:雙曲線有關的題型講解
    典型例題分析1:焦點為(6,0)且與雙曲線x2/2﹣y2有相同漸近線的雙曲線的方程為 (  )A.x2/24﹣y2/12=1B.y2/12﹣x2/24=1考點分析:雙曲線的簡單性質.題幹分析:設所求的雙曲線方程是x2/2﹣y2=K,由焦點(6,0)在x軸上,知 k>0,截距列出方程,求出k值,即得所求的雙曲線方程.
  • 吳國平:學會運用數學思想攻克等比數列相關知識內容
    昨天我們講了等差數列及其前n項和的相關知識內容,那麼今天我們就繼續講解數列另一塊重要知識內容,也就是等比數列及其前n項的和。等比數列可以說是數列的核心內容,自然也是高考必考的知識點之一。在高考數學中,跟等比數列相關的主要考點有:等比數列的基本運算與通項公式;等比數列的性質;等比數列的前n項和;等比數列的綜合應用等等。
  • 高考數學最後幾天如何備考?深圳中學數學名師為你劃重點!
    &nbsp&nbsp&nbsp&nbsp原標題:高考數學最後幾天如何備考?深圳中學數學名師為你劃重點!&nbsp&nbsp&nbsp&nbsp見圳客戶端·深圳新聞網2020年7月2日訊(深圳特區報記者 李麗)數學是一門拉分學科,數學成績的高低往往影響著高考總成績,為此,在高考臨考前的倒計時衝刺中,如何複習才能為數學再提幾分?
  • 高中數學,等比數列運算方法比較,你覺得哪個更好
    在等比數列各種題型中,計算是重中之重,首先常規計算方法一定要熟練掌握,常規方法就是嚴格使用等比數列通項公式、前n項和公式和性質進行計算,這種運算方式雖然會有點兒繁瑣,但很有效;而藉助等比數列的特點進行計算往往會使解題過程簡單很多,有趣很多;下面咱們通過例題來分別體會這兩種運算方式的不同。
  • 高考數學數列大題考法與熱點題型全面總結,高二高三請收藏
    高考數學命題動向:從近五年高考試題分析來看,等差、等比數列是重要的數列類型,高考考查的主要知識點有:等差、等比數列的概念、性質、前n項和公式.由於數列的滲透力很強,它和函數、方程、向量、三角形、不等式等知識相互聯繫,優化組合,無形中加大了綜合的力度