衝刺2018年高考數學,典型例題分析67:數列求和相關綜合題型 - 吳國...

2021-01-08 吳國平數學教育

已知兩個無窮數列{an}和{bn}的前n項和分別為Sn,Tn,a1=1,S2=4,對任意的n∈N*,都有3Sn+1=2Sn+Sn+2+an.

(1)求數列{an}的通項公式;

(2)若{bn}為等差數列,對任意的n∈N*,都有Sn>Tn.證明:an>bn;

(3)若{bn}為等比數列,b1=a1,b2=a2,求滿足(an+2Tn)/(bn+2Sn)=ak(k∈N*)的n值.

解:(1)由3Sn+1=2Sn+Sn+2+an,得2(Sn+1﹣Sn)=Sn+2﹣Sn+1+an,

即2an+1=an+2+an,所以an+2﹣an+1=an+1﹣an.

由a1=1,S2=4,可知a2=3.

所以數列{an}是以1為首項,2為公差的等差數列.

故{an}的通項公式為an=1+2(n﹣1)=2n﹣1,n∈N*.

考點分析:

數列的求和;數列遞推式.

題幹分析:

(1)運用數列的遞推式和等差數列的定義和通項公式,即可得到所求;

(2)方法一、設數列{bn}的公差為d,求出Sn,Tn.由恆成立思想可得b1<1,求出an﹣bn,判斷符號即可得證;

方法二、運用反證法證明,設{bn}的公差為d,假設存在自然數n0≥2,

使得不等式成立,推理可得d>2,作差Tn﹣Sn,推出大於0,即可得證;

(3)運用等差數列和等比數列的求和公式,求得Sn,Tn,化簡(an+2Tn)/(bn+2Sn),推出小於3,結合等差數列的通項公式和數列的單調性,即可得到所求值.

解題反思:

數列求和不等式是近幾年高考的熱點問題,也是很多考生感到棘手的問題,而考生對於此類題的處理方法常用的是數學歸納法和一般的不等式放縮等解題方法。

正裂項相消是數列求和常見的解題策略,其本質是把數列的通項變成兩項差且具有傳遞性的形式,累加使之能消去中間項,最終達到求和的目的。

相關焦點

  • 吳國平:2018年高考數學準備戰,衝刺數列求和問題
    從2017年高考數學及歷年試題分布來看,數列求和問題一直高考數學的熱點和重點。這對於參加2018年高考的考生來說,是一個很好的啟發,可以提早準備,為高考打下一個紮實基礎。數列作為高中數學的重要學習內容之一,又是學習高等數學的基礎,它是初等數學與高等數學的一個重要銜接點。高考對數列的考查比較全面,可以說每年都不會遺漏。
  • 衝刺19年高考數學,典型例題分析262:數列求和的題型
    典型例題分析1:已知數列{an}的通項公式為an=n+cos(nπ/2),Sn為其前n項和,則S100=   .考點分析:數列的求和.題幹分析:通過記bn=cos(nπ/2)可知數列{bn}是以4為周期的周期數列,且b1+b2+b3+b4=0,進而利用等差數列的求和公式計算即得結論.
  • 衝刺19年高考數學,典型例題分析142:等比數列有關的題型
    典型例題分析1:已知正項等比數列{an}中,a1=1,其前n項和為Sn(n∈N*),且1/a1-1/a2=2/a3,則S4=   .題幹分析:由題意先求出公比,再根據前n項和公式計算即可.典型例題分析2:在公比為q且各項均為正數的等比數列{an}中,Sn為{an}的前n項和.若a1=1/q2,且S5=S2+2,則q的值為   .考點分析:等比數列的前n項和.
  • 衝刺19年高考數學,典型例題分析261:等比數列的題型講解
    典型例題分析1:在正項等比數列{an}中,a1008a1009=1/100,則lga1+lga2+…+lga2016=(  )A.2015B.2016C.﹣2015D.﹣2016解:由正項等比數列{an}的性質可得
  • 高考數學——「數列」部分專講,10道例題講解應試技巧+解題思維
    在歷年高考數學的壓軸題中,有關數列的題型一直佔據著不可或缺的地位,往往讓很多同學無所適從.最典型的便是數列放縮題型,其內在的估計思想更是數學思想中的精髓.對於高中數學而言,數列這一部分內容主要包括數列通項與數列求和.又由於數列可視為一類特殊的函數,則其函數性質也會偶爾一展風採.
  • 吳國平:高考數學必考難點-數列求和的幾種方法
    數列問題一直是高考數學的重難點,深受出卷老師的青睞,可以說是每年高考數學必考的考點之一。雖然大家都知道高考數學數列的重要性,但很多同學對於這類問題,一直無從下手。數列問題考查範圍比較廣泛,如數列的概念與簡單表示法、數列的綜合應用、數列求和等等,今天我們就來講數列求和的解題技巧。
  • 2020年高考數學如何複習?可以從數列開始
    從歷年高考數學題型來看,數列可以和函數、方程、不等式、三角等相關知識進行「串聯」,形成更為複雜的綜合性問題;或是結合實際生活例子,考查考生運用數列知識解決實際問題的能力。要想學好數列基礎知識內容,我們要學會從多角度去看待數列。
  • 高考數學必考數列基本公式+考點知識+經典例題解法!
    2021-01-11 05:54:44 來源: 齊魯鄉村 舉報   數學
  • 高中數學等比數列求和公式拓展小技巧
    高中數學必修5----等比數列的求和公式拓展,等比數列求和公式原型是這樣的【點撥】等比數列的求和公式可以理解為指數函數的係數和常數項互為相反數
  • 衝刺2019年高考數學,典型例題分析114: 等比數列有關的求和問題
    典型例題分析1:若公比為2的等比數列{an}滿足a7=127a24,則{an}的前7項和為.考點分析:等比數列的前n項和.題幹分析:利用等比數列的通項公式列出方程,求出首項,再由等比數列的前n項和公式能求出數列的前7項和.
  • 衝刺2019年高考數學,典型例題分析32:與等比數列有關的解答題
    已知數列{an}中,a1=2,且2an=an-1+1(n≥2,n∈N+).(I)求證:數列{an﹣1}是等比數列,並求出數列{an}的通項公式;(Ⅱ)設bn=n(an﹣1),數列{bn}的前n項和為Sn,求證:1≤Sn<4.
  • 高考數學題型全歸納
    高考數學題型全歸納學好數學要多做題,多做題能熟能生巧,但是多做題並不等於濫做題、盲目做題,而是要多做典型有代表性的題,下文有途網小編給大家整理了《高考數學題型全歸納》。
  • 衝刺2019年高考數學,典型例題分析108: 與平面向量相關高考題
    典型例題分析1:考點分析:平面向量數量積的運算;正弦函數的圖象.題幹分析:由f(x)=2sin(πx/6+π/3)=0,結合已知x的範圍可求A,設B(x1,y1),C(x2,y2),由正弦函數的對稱性可知B,C兩點關於A對稱即x1+x2=8,y1+y2=0,代入向量的數量積的坐標表示即可求解。典型例題分析2:考點分析:平面向量的坐標運算.
  • 2019高考衝刺:等比數列解題技巧—實戰篇(一)
    2019高考衝刺:等比數列解題技巧—實戰篇(一)(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)上期詳細介紹了等比數列的概念和基本性質,熟練理解和掌握等比數列的概念和性質是解答等比數列相關問題的基礎,在此基礎上,輔以適當的練習,學好等比數列就會變得很簡單。本期開始逐步介紹等比數列的常見題型。題型一、等比數列的判斷等比數列作為兩大基本數列之一,是高考必考,也是我們在學習中必須掌握的知識。
  • 高考數學數列大題考法與熱點題型全面總結,高二高三請收藏
    高考數學命題動向:從近五年高考試題分析來看,等差、等比數列是重要的數列類型,高考考查的主要知識點有:等差、等比數列的概念、性質、前n項和公式.由於數列的滲透力很強,它和函數、方程、向量、三角形、不等式等知識相互聯繫,優化組合,無形中加大了綜合的力度
  • 衝刺2018年高考數學,典型例題分析79:線性回歸方程相關題型
    (2)隨著節目的播出,極大激發了觀眾對成語知識的學習積累的熱情,從中獲益匪淺.現從觀看該節目的觀眾中隨機統計了4位觀眾的周均學習成語知識的時間y(單位:小時)與年齡x(單位:歲),並製作了對照表(如表所示)考點分析
  • 2020年高考加油,數列有關的題型講解分析
    典型例題分析1:已知等差數列{an}的前n項和為Sn,若a3=9﹣a6,則S8=   .解:由題意可得a3+a6=18,由等差數列的性質可得a1+a8=18故S8=8(a1+a8)/4=4×18=72故答案為:72考點分析:等差數列的前n項和.題幹分析:可得a1+a8=18,代入求和公式計算可得.
  • 「創作開運禮」2020年高考理科數學第17題數列應對技巧
    數列考點匯總,難度係數和分值分析考點匯總:一般是圍繞等差數列和等比數列進行考核的,同時也會對其相關的變形進行考核,如已知數列的前n項和求數列的通項公式,或者已知數列相鄰幾項之間的關係,通過裂項或者列項法進行通項公式的求解。
  • 衝刺2018年高考數學,典型例題分析39:直線與橢圓的位置關係 - 吳國...
    考點分析:直線與橢圓的位置關係.題幹分析:(Ⅰ)直線y=x﹣1與x軸的交點坐標為(1,0),得橢圓C:x2/a2+y2/b2=1(a>b>0)的半焦距c.又離心率e=c/a=1/3,得a2=9,b2=8.即可求出橢圓方程.
  • 衝刺2018年高考數學,典型例題分析62:極坐標方程相關的題型
    考點分析:簡單曲線的極坐標方程;參數方程化成普通方程.題幹分析:(Ⅰ)直線l的極坐標方程化為ρcosθ﹣ρsinθ﹣1=0,由x=ρcosθ,y=ρsinθ,能求出直線l的普通方程;曲線C的參數方程消去參數能求出曲線C的普通方程.