2019高考衝刺:等比數列解題技巧—實戰篇(一)

2021-01-09 大教育者

2019高考衝刺:等比數列解題技巧—實戰篇(一)

(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)

上期詳細介紹了等比數列的概念和基本性質,熟練理解和掌握等比數列的概念和性質是解答等比數列相關問題的基礎,在此基礎上,輔以適當的練習,學好等比數列就會變得很簡單。本期開始逐步介紹等比數列的常見題型。

題型一、等比數列的判斷

等比數列作為兩大基本數列之一,是高考必考,也是我們在學習中必須掌握的知識。在很多題目中並沒有明確告訴這就是等比數列,但是如果我們能快速判斷出來這就是等比數列,然後運用等比數列的性質解題會簡化很多解題步驟,並且會降低計算量,提高解題正確率。

等比數列常用的判斷方法有以下四種:

等比數列判斷方法

下面看一道典型例題:

分析:題目中告訴了我們這個數列的前n項和,因此我們可以有兩種方法求解,第一種是常規解法,利用前n項和與通項公式之間的關係,直接求出該數列的通項公式,再根據通項公式判斷;第二種方法比較簡單,但是需要對等比數列的性質非常熟悉:等比數列前n項和公式變形,可知等比數列的前n項和是關於公比的一個指數函數,並且一定會出現k(1—qn)的形式(k為常數,可正可負)。所以該數列為等比數列。

選B.

再看一道等比數列判斷的練習(答案見下期)

題型二、構造等比數列求通項公式

構造等比數列求通項公式是遞推法求數列通項公式最常用的一種方法,後面在數列通項公式中會詳細介紹該方法,本篇文章先看一下比較基礎的題型。

先看一下這類題型的解題思路:

下面看一個基本題型:

分析:什麼時候構造等比數列什麼時候構造等差數列求解通項公式,在數列的通項公式裡面會有詳細的介紹,本題是一個比較簡單的構造等比數列數列通項公式的題目。

再看一道類似的題目(答案見下期)

題型三、等比數列的基本量計算

a1與q是等比數列中最活躍的兩個基本量,要學會靈活運用這兩個基本量進行相關的運算,如

如果不能很快發現題目中隱藏的一些關係時,也可以直接利用等比數列的基本性質進行計算,這樣可以減少思考的時間,但是相應地會增加計算的難度。

下面看一個常見題型:

分析:利用前面講的性質快速計算出該數列的公比q。

答案見下期

本期分享了三種等比數列的常見題型,下期文章繼續分享,敬請期待!!!歡迎大家一起評論討論!!

相關焦點

  • 等比數列解題技巧—實戰篇
    等比數列解題技巧—實戰篇二(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)前面介紹了三種等比數列的常見題型,本期繼續介紹等比數列另外幾種常見題型。題型四、等比數列的性質無論是等比數列還是等差數列,在考查性質時都要特別留意各項腳標之間的關係,而且要把等差數列和等比數列的性質區分開,不要搞混淆了。等差數列是將兩項求和,等比數列是將兩項求積。分析:等比數列的性質可以類比等差數列來學習,這樣能夠有效地防止將兩個數列的性質搞混淆。
  • 等比數列解題技巧—基礎知識篇
    等比數列解題技巧—基礎知識篇(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)等比數列和等差數列作為高中的兩大基本數列,在數列的學習中佔有很重要的地位,是學習其它數列的一個基礎。
  • 衝刺2019年高考數學,典型例題分析32:與等比數列有關的解答題
    已知數列{an}中,a1=2,且2an=an-1+1(n≥2,n∈N+).(I)求證:數列{an﹣1}是等比數列,並求出數列{an}的通項公式;(Ⅱ)設bn=n(an﹣1),數列{bn}的前n項和為Sn,求證:1≤Sn<4.
  • 高中數學等比數列求和公式拓展小技巧
    高中數學必修5----等比數列的求和公式拓展,等比數列求和公式原型是這樣的【點撥】等比數列的求和公式可以理解為指數函數的係數和常數項互為相反數
  • 高考數學——「數列」部分專講,10道例題講解應試技巧+解題思維
    在歷年高考數學的壓軸題中,有關數列的題型一直佔據著不可或缺的地位,往往讓很多同學無所適從.最典型的便是數列放縮題型,其內在的估計思想更是數學思想中的精髓.對於高中數學而言,數列這一部分內容主要包括數列通項與數列求和.又由於數列可視為一類特殊的函數,則其函數性質也會偶爾一展風採.
  • 衝刺19年高考數學,典型例題分析261:等比數列的題型講解
    典型例題分析1:在正項等比數列{an}中,a1008a1009=1/100,則lga1+lga2+…+lga2016=(  )A.2015B.2016C.﹣2015D.﹣2016解:由正項等比數列{an}的性質可得
  • 衝刺2019年高考數學,典型例題分析114: 等比數列有關的求和問題
    典型例題分析1:若公比為2的等比數列{an}滿足a7=127a24,則{an}的前7項和為.考點分析:等比數列的前n項和.題幹分析:利用等比數列的通項公式列出方程,求出首項,再由等比數列的前n項和公式能求出數列的前7項和.
  • 等差數列與等比數列判定,利用數列基本性質,高考重點考題
    數列做為我們高中數學一塊非常重要的內容,並且數列的內容常常是利用各種公式的變換來求解數列的得數或是判定數列的性質,數列的考察往往比較的綜合,並且也有一定的難度,數列常常還可以作為載體,與函數解析式結合在一起進行考察,所以這也成了我們高考考題中的大熱題目,因為通過一道題便可以考察很多的數學知識點
  • 吳國平:2018年高考數學準備戰,衝刺數列求和問題
    從2017年高考數學及歷年試題分布來看,數列求和問題一直高考數學的熱點和重點。這對於參加2018年高考的考生來說,是一個很好的啟發,可以提早準備,為高考打下一個紮實基礎。數列作為高中數學的重要學習內容之一,又是學習高等數學的基礎,它是初等數學與高等數學的一個重要銜接點。高考對數列的考查比較全面,可以說每年都不會遺漏。
  • 「創作開運禮」2020年高考理科數學第17題數列應對技巧
    2020年高考理科數學第一題數列考點匯總以及答題技巧,教你輕鬆拿滿分嗨,大家好,這裡是尖子生數理化教育,每天定時帶你學習數理化英語和奧數的尖子生數理化教育,歡迎大家加入我們共同成長。藉此佳節,祝您2020年春節快樂,萬事如意,心想事成。
  • 高考數學必考:等差等比數列
    數列是高中數學的重要內容之一,也是高考的必考考點。等差等比數列作為兩種很特殊的數列,歷年來一直都是高考考查的熱點內容。所以掌握數列對同學們來說非常重要,那麼如何快速掌握數列的相關知識,並且能夠靈活運用呢?
  • 一文教你突破大部分數列題目
    作為高考數學必考知識點,數列問題對很多學生來說都是很麻煩的,因為它題型多樣,思路靈活,變化莫測。但只要掌握題型和解題方法,準確把握各種模式下的解題方法,這類題目也可以做到手到擒來。
  • 高考數學大題的解題技巧及解題思想
    【導語】數學是很多小夥伴的拉分項目,尤其是的數學大題,在高考時很多同學做到大題的時候往往因為時間不夠導致數學試卷不能寫完,試卷得分不高,掌握大題的解題思想可以幫助同學們快速找到解題思路,節約思考時間。所以無憂考網專門為大家整理了一些數學大題的解題技巧和高考數學五大解題思想,幫助同學們更好地提分!
  • 高考六大題型|數列解答題詳細解題模板,快收藏起來留著備用吧
    引言:高考解答題共有六道,其中第17題考查的是三角函數或是數列交替出現。下面主要探討下數列解答題主要考查內容,通過幾道例題展示解題步驟,最後歸納出解決此類題型的解題模板。一:高考對數列解答題的考查主要是兩塊內容:1、求數列的通項公式,是高考的熱點問題之一,幾乎每年必考.主要是利用一個數列的遞推關係求數列的通項公式,即給出與一個數列相關的項或相關的若干項的和的一個關係式,求出該數列的通項公式。
  • 高中數列專題:經典題目集錦(含答案)及題型精選,十分鐘解題!
    數列是高中數學的重要知識點,也是高考分值佔比較重的必考內容。數列主要分為兩大類,即等差數列和等比數列。高考中的數列題目基本上都是對數列基礎知識和相關解題方法,和與方程、函數、不等式、導數、圓錐曲線等綜合考查。
  • 32、高考大題數列專題
    題型一 等差、等比數列的綜合問題解題心得1.對於等差、等比數列,求其通項及求前n項的和時,只需利用等差數列或等比數列的通項公式及求和公式求解即可.2.有些數列可以通過變形、整理,把它轉化為等差數列或等比數列,進而利用等差數列或等比數列的通項公式或求和公式解決問題.
  • 《2019高考衝刺秘笈》英語篇:夯實基礎加強實際應用
    編者按距離2019年高考還有70天,如何利用寶貴的時間提高複習效率?考試答題怎麼才能得高分?齊魯晚報泰安融媒聯合泰安一中特推出《2019·高考衝刺秘笈》,結合高考題型分析,答題提分技巧等內容,幫助考生迎戰高考。
  • 吳國平:高考數學必考難點-數列求和的幾種方法
    數列問題一直是高考數學的重難點,深受出卷老師的青睞,可以說是每年高考數學必考的考點之一。雖然大家都知道高考數學數列的重要性,但很多同學對於這類問題,一直無從下手。數列問題考查範圍比較廣泛,如數列的概念與簡單表示法、數列的綜合應用、數列求和等等,今天我們就來講數列求和的解題技巧。
  • 高中數學:關於等比數列及其前n項和問題的複習資料&PPT分享
    技巧總結歸納:1.在解決等比數列的有關問題時,要注意挖掘隱含條件,利用性質,特別是性質「若m+n=p+q,則a_m·a_n=a_p·a_q」,可以減少運算量,提高解題速度.2.等比數列的性質可以分為三類:一是通項公式的變形;二是等比中項的變形,三是前n項和公式的變形.根據題目條件,認真分析,發現具體的變化特徵即可找出解決問題的突破口.本文由Math實驗室原創文章,因圖片上傳格式問題,可能造成圖片模糊不清問題,如若需要相關可列印電子版文件可選擇關注哦~同時對於相關文檔下載可直接百度一下「Math實驗室」進入網站下載,也可私聊我留下郵箱哦!
  • 高中數學難點解析——數列試題的解題方法與技巧,零基礎也能聽懂
    高中數學想要拿高分,必須學好數列。它不僅會在選擇題中出現,在大題中也常考察。通過分析歷年高考真題不難發現,數列部分的試題能佔20分左右。但大多數同學對這部分知識點掌握不好,跟不上老師傳授的答題技巧,時間和精力花了很多,就是學不會。如果你就是這種情況,那麼看到這篇文章就對了。