高中數學:關於等比數列及其前n項和問題的複習資料&PPT分享

2021-01-08 Math實驗室

技巧總結歸納:

1.在解決等比數列的有關問題時,要注意挖掘隱含條件,利用性質,特別是性質「若m+n=p+q,則a_m·a_n=a_p·a_q」,可以減少運算量,提高解題速度.

2.等比數列的性質可以分為三類:一是通項公式的變形;二是等比中項的變形,三是前n項和公式的變形.根據題目條件,認真分析,發現具體的變化特徵即可找出解決問題的突破口.

本文由Math實驗室原創文章,因圖片上傳格式問題,可能造成圖片模糊不清問題,如若需要相關可列印電子版文件可選擇關注哦~同時對於相關文檔下載可直接百度一下「Math實驗室」進入網站下載,也可私聊我留下郵箱哦!也希望本文對你有所幫助~

更多文章:

高中數學複習:關於函數的奇偶性、周期性與對稱性綜合知識複習

高中數學:關於二次函數與冪函數的複習資料+習題講練PPT

高考數學:函數及其表示類問題複習資料&複習講義PPT

相關焦點

  • 《等比數列前n項和》說課稿
    尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《等比數列前n項和》。新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
  • 教學研討|2.5 等比數列的前n項和
    設計思路如下:四、教學目標1、掌握等比數列的前n項和公式,能用等比數列的前n項和公式解決相關問題。2、通過等比數列的前n項和公式的推導過程,體會錯位相減法以及分類討論的思想方法。3、通過對等比數列的學習,發展數學應用意識,逐步認識數學的科學價值、應用價值,發展數學的理性思維。
  • 高中數學,拿下數列大題第2講,證明等比數列及求前n項和
    高中數學,拿下數列大題第2講,證明等比數列及求前n項和,高考數學專題訓練。第(1)問,把證明{bn}是等比數列,轉化為證明①式成立,這是關鍵的第一步,能想到這一步,就有了證明的目標,接下來根據已知條件朝這個目標推理就可以了。
  • 等比數列前n項和性質你能寫出多少?
    一、前言等比數列的求和公式之前已經講過了,如果沒有看過的讀者可以翻看一下之前發布的文章,現在需要明白等比數列的性質有哪些?但是在討論性質以前,要明白等比數列怎麼求?二、等比數列前n項和求等比數列的前n項和的過程中體現了兩種高中數學的思想:1)方程思想等比數列求和公式中有一個知三求二問題,這就是方程思想的體現。2)分類討論的思想在進行等比數列求和的過程中,由於等比數列的q是否為1,嚴重影響了等比數列求和的公式選取,這就用到了分類討論思想。
  • 等差數列等比數列前n項和公式總結
    高中數列在教師資格和教師招聘考試中都是非常重要的考點,關於數列的考題雖然表面看去變化多樣,但看其本質,可歸結為兩大類:求一個數列的通項an,求一個數列的前n項和,而解決這兩類題都少不了等差數列以及等比數列的求和公式。這篇文章就針對等差和等比數列求和公式給出推導和證明過程。
  • 等比數列的前n項和到底怎麼求?
    一、前言等比數列的相關概念,通項公式之前已經講了,如果沒看,或者是不懂得讀者可以往前看一看,等差數列有前n項和,同樣的等比數列也有前n項和,那這前n項和到底怎麼求?二、等比數列前n項和等比數列的前n項和公式作者就直接給讀者們公布了:為什麼直接就公布了,因為等比數列的求和公式在高中階段只需要會用,就可以,沒有必要知道,等比數列求和公式是怎麼來的。三、對於上述公式的分析1)首先等比數列的通項公式與首項和公比有關。
  • 奇數項和偶數項是不同的等比數列,如何求前n項和,這方法不錯
    高考數學複習,奇數項和偶數項是不同的等比數列,如何求前n項和,這方法不錯。這種數列的特點是:奇數項和偶數項是公比相同而首項不同的等比數列,下面所講的前n項和的求法也僅適用於這一種數列。如果公比不同,就不能使用這種方法,在以後的課程中會詳細講解。
  • 多項式與等比數列乘積的前n項和的求解思路
    上篇文章中講到,等差數列和等比數列的通項公式,並分別推導了其前n項和公式。等差數列前n項和公式的推導用到了倒序相加法,等比數列前n項和公式用到了錯位相減法。雖然這兩種數列是最簡單、最基礎的數列,但從其前n項和的推導過程中,我們能夠學習和借鑑到其中的方法,下面我將演示利用錯位相減法求解更複雜的數列的前n項和。複雜數列構造及求解例如,定義這樣一種數列c,它的通項公式可寫成等差數列第n項和等比數列第n項乘積的形式。我們如何求解數列c的前n項和表達式?
  • 《等比數列的前n項和》教學設計
    《等比數列的前n項和》教學設計一、教學目標1.知識與技能目標:理解並掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。2.過程與方法目標:通過對公式推導方法的探索與發現,滲透特殊到一般、類比與轉化、分類討論等數學思想,提高觀察、比較、抽象、概括等邏輯思維能力。3.情感態度與價值觀目標:逐步養成良好的學習習慣和數學思維的深刻性、廣闊性等思維品質,滲透事物之間等價轉化和理論聯繫實際的辯證唯物主義觀點。
  • 2016高考數學複習知識點:數學數列公式大全
    一、高中數列基本公式:   1、一般數列的通項an與前n項和Sn的關係:an=      2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
  • 高中數學公式大全:數列公式
    :反三角函數、函數、數列、三角函數和稜錐數學公式大全。   一、高中數列基本公式:   1、一般數列的通項an與前n項和Sn的關係:an=   2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,
  • 《等比數列》~試講稿~高中數學
    在上課之前,老師來跟大家分享一個小故事,這個故事是這樣的:國王為了獎勵西洋棋的發明者,去詢問他想要什麼獎勵,西洋棋的發明者說,請在棋盤的第一個格子上放上一粒米,在第二個格子上放上兩粒米,在第三個格子上放上四粒米,以此類推,放完為止。那麼老師想問大家一個問題,棋盤上的米粒是按照怎麼的規律來擺放的呢?現在我們帶著這個問題一起進入到今天的課程《等比數列》(板書課題)。
  • 高考數學必考:等差等比數列
    數列是高中數學的重要內容之一,也是高考的必考考點。等差等比數列作為兩種很特殊的數列,歷年來一直都是高考考查的熱點內容。所以掌握數列對同學們來說非常重要,那麼如何快速掌握數列的相關知識,並且能夠靈活運用呢?
  • 高中數學:求數列前n項和的7種方法
    求數列的前n項和要藉助於通項公式,即先有通項公式,再在分析數列通項公式的基礎上,或分解為基本數列求和,或轉化為基本數列求和。當遇到具體問題時,要注意觀察數列的特點和規律,找到適合的方法解題。二、用公式法求數列的前n項和對等差數列、等比數列,求前n項和Sn可直接用等差、等比數列的前n項和公式進行求解。運用公式求解的注意事項:首先要注意公式的應用範圍,確定公式適用於這個數列之後,再計算。
  • 求數列前n項和,明明看著很簡單,為啥還是做不出來
    高考數學複習,求數列前n項和,明明看著很簡單,為啥還是做不出來。一般來說,數列題計算量不會很大,但要注意的小細節很多,稍不小心,要麼出錯,要麼無法進行下去。你可以試做一下這道形式簡單的高考數列大題,感受一下覺得不難,但又時時處處有障礙,很難順順暢暢完成的解題過程。
  • 等差數列與等比數列判定,利用數列基本性質,高考重點考題
    ,由於這類型題目的難度比較大,比較考察考生對於數學基礎的掌握程度,以及敏銳的數學觀察力,所以對於考生來說這也是一道令人頭疼的題目,並且數列的題目計算量也比較大,所以考生面對這些題目的時候常常會不知所措,無從下手,今天我就給大家具體講解一下關於這類型題目的做法,給大家提供一些獨家知識乾貨!
  • 從一道高考數列題探討數列前n項和求法
    筆者又在「幫幫答」平臺上接到了一單關於數列的題目,想和大家分享一下,題目是這樣的:同樣,建議先動手做一下,然後再繼續往下看。這道題也是已知數列 {a} 的前n 項和 S 和通項公式 a 的關係。很明顯,在我們高中生的知識範疇內,能求前 n 項和的無非是等差數列、等比數列,稍微複雜一點的等差數列乘以等比數列(用錯位相減)法,我們仔細觀察上式,可以發現在分母上出現了 n 。
  • 吳國平:要拿到高考數學數列的分數, 就要學會求等差數列及其前n項和
    數列作為高考數學重點內容,一直是高考數學的熱點和必考的考點,自然而然受到廣大考生的關注。在高考數學裡數列一般就涉及等差數列和等比數列相關知識內容,因此,今天我們就一起來簡單講講等差數列及其前n項的和相關的考點,進行分析,希望能幫助到大家。什麼是等差數列?
  • 高中數學,數列綜合題,證明等比數列,常考題必須掌握
    這節課主要討論兩個問題:證明一個數列是等比數列,求一個非等差等比數列的通項;證明等比數列的方法一般是證明第n+1項與第n項的比是一個常數即可;求數列的通項是數列中最重要的問題,在綜合題中,一個數列直接求通項非常困難,往往要藉助另一個數列的通項間接地求出來。
  • 精選:高中數學數列經典試題+解題方法大全,從不懂到穩拿分!
    數列是高中數學的主幹知識,又有很強的滲透和輻射性,它與數、式、方程、函數、不等式、解析幾何等都有著密切的聯繫,所以數列專題一直是高中階段乃至高考複習的重點內容。高中數學每個課題下面都有它的基本規則,能把遊戲玩好的人肯定是熟悉規則的人,在這個規則下你應該掌握的知識包括等差等比的基本公式及定理,數列求和的常用思路,特徵數列的求解,等這些可以求得數列通項表達的技巧。如果你覺得你數列方面的知識已經完全掌握了,那我問你2個問題:你是否能夠綜合且靈活的利用數列相關的基本知識?