高中數學:求數列前n項和的7種方法

2020-12-05 愛數學懂教育

求數列的前n項和要藉助於通項公式,即先有通項公式,再在分析數列通項公式的基礎上,或分解為基本數列求和,或轉化為基本數列求和。當遇到具體問題時,要注意觀察數列的特點和規律,找到適合的方法解題。

一、用倒序相加法求數列的前n項和

如果一個數列{an},與首末項等距的兩項之和等於首末兩項之和,可採用把正著寫與倒著寫的兩個和式相加,就得到一個常數列的和,這一求和方法稱為倒序相加法。我們在學知識時,不但要知其果,更要索其因,知識的得出過程是知識的源頭,也是研究同一類知識的工具,例如:等差數列前n項和公式的推導,用的就是「倒序相加法」。

例題1:設等差數列{an},公差為d,求證:{an}的前n項和Sn=n(a1+an)/2

解析:Sn=a1+a2+a3+...+an ①

倒序得:Sn=an+an-1+an-2+…+a1 ②

①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)

又∵a1+an=a2+an-1=a3+an-2=…=an+a1

∴2Sn=n(a2+an) Sn=n(a1+an)/2

點撥:由推導過程可看出,倒序相加法得以應用的原因是藉助a1+an=a2+an-1=a3+an-2=…=an+a1即與首末項等距的兩項之和等於首末兩項之和的這一等差數列的重要性質來實現的。

二、用公式法求數列的前n項和

對等差數列、等比數列,求前n項和Sn可直接用等差、等比數列的前n項和公式進行求解。運用公式求解的注意事項:首先要注意公式的應用範圍,確定公式適用於這個數列之後,再計算。

點撥:這道題只要經過簡單整理,就可以很明顯的看出:這個數列可以分解成兩個數列,一個等差數列,一個等比數列,再分別運用公式求和,最後把兩個數列的和再求和。

三、用裂項相消法求數列的前n項和

裂項相消法是將數列的一項拆成兩項或多項,使得前後項相抵消,留下有限項,從而求出數列的前n項和。

點撥:此題先通過求數列的通項找到可以裂項的規律,再把數列的每一項拆開之後,中間部分的項相互抵消,再把剩下的項整理成最後的結果即可。

四、用錯位相減法求數列的前n項和

錯位相減法是一種常用的數列求和方法,應用於等比數列與等差數列相乘的形式。即若在數列{an·bn}中,{an}成等差數列,{bn}成等比數列,在和式的兩邊同乘以公比,再與原式錯位相減整理後即可以求出前n項和。

例題4:求數列{nan}(n∈N*)的和

點撥:此數列的通項是nan,係數數列是:1,2,3……n,是等差數列;含有字母a的數列是:a,a2,a3,……,an,是等比數列,符合錯位相減法的數列特點,因此我們通過錯位相減得到③式,這時考慮到題目沒有給定a的範圍,因此我們要根據a的取值情況分類討論。我們注意到當a=1時數列變成等差數列,可以直接運用公式求值;當a≠1時,可以把③式的兩邊同時除以(1-a),即可得出結果。

五、用迭加法求數列的前n項和

迭加法主要應用於數列{an}滿足an+1=an+f(n),其中f(n)是等差數列或等比數列的條件下,可把這個式子變成an+1-an=f(n),代入各項,得到一系列式子,把所有的式子加到一起,經過整理,可求出an,從而求出Sn。

例題5:已知數列6,9,14,21,30,……其中相鄰兩項之差成等差數列,求它的前n項和。

六、用分組求和法求數列的前n項和

所謂分組求和法就是對一類既不是等差數列,也不是等比數列的數列,若將這類數列適當拆開,可分為幾個等差、等比或常見的數列,然後分別求和,再將其合併。

例題6:求S = 12 - 22 + 32 - 42 + … + (-1)n-1n2(n∈N*)

點撥:分組求和法的實質是:將不能直接求和的數列分解成若干個可以求和的數列,分別求和。

七、用構造法求數列的前n項和

所謂構造法就是先根據數列的結構及特徵進行分析,找出數列的通項的特徵,構造出我們熟知的基本數列的通項的特徵形式,從而求出數列的前n項和。

版權聲明

1、本文來源於網絡,文章內容僅代表作者本人觀點.

2、版權歸相關權利人所有,尊重知識與勞動,轉載請保留版權資訊。如存在不當使用的情況,請隨時與我們聯繫刪除

相關焦點

  • 高中數學,拿下數列大題第2講,證明等比數列及求前n項和
    高中數學,拿下數列大題第2講,證明等比數列及求前n項和,高考數學專題訓練。第(1)問,把證明{bn}是等比數列,轉化為證明①式成立,這是關鍵的第一步,能想到這一步,就有了證明的目標,接下來根據已知條件朝這個目標推理就可以了。
  • 奇數項和偶數項是不同的等比數列,如何求前n項和,這方法不錯
    高考數學複習,奇數項和偶數項是不同的等比數列,如何求前n項和,這方法不錯。這種數列的特點是:奇數項和偶數項是公比相同而首項不同的等比數列,下面所講的前n項和的求法也僅適用於這一種數列。如果公比不同,就不能使用這種方法,在以後的課程中會詳細講解。
  • 求數列前n項和,明明看著很簡單,為啥還是做不出來
    高考數學複習,求數列前n項和,明明看著很簡單,為啥還是做不出來。一般來說,數列題計算量不會很大,但要注意的小細節很多,稍不小心,要麼出錯,要麼無法進行下去。你可以試做一下這道形式簡單的高考數列大題,感受一下覺得不難,但又時時處處有障礙,很難順順暢暢完成的解題過程。
  • 從一道高考數列題探討數列前n項和求法
    這道題也是已知數列 {a} 的前n 項和 S 和通項公式 a 的關係。這樣,我們就得知了數列 {a} 是公差為1的等差數列,我們求出 a 就可以了,就可以得到通項公式 a ,a 我們直接帶入題目已知的關係式就能求得,過程如下所示 :該題第一小問很簡單,關鍵是第二小問,第二小問通過數列 {a} 構造出數列 {b} ,要求我們計算數列的前 n 項和 T ,首先我們將計算得到的 a 代進去可以得到 b ,如下所示:
  • 等比數列的前n項和到底怎麼求?
    一、前言等比數列的相關概念,通項公式之前已經講了,如果沒看,或者是不懂得讀者可以往前看一看,等差數列有前n項和,同樣的等比數列也有前n項和,那這前n項和到底怎麼求?二、等比數列前n項和等比數列的前n項和公式作者就直接給讀者們公布了:為什麼直接就公布了,因為等比數列的求和公式在高中階段只需要會用,就可以,沒有必要知道,等比數列求和公式是怎麼來的。三、對於上述公式的分析1)首先等比數列的通項公式與首項和公比有關。
  • 方法技巧|求數列前n項和的常用方法(8種方法)
    二、倒序相加法如果一個數列,與首末兩端等「距離」的兩項的和相等或等於同一常數,那麼求這個數列的前項和即可用倒序相加法。如:等差數列的前項和即是用此法推導的,就是將一個數列倒過來排列(反序),再把它與原數列相加,就可以得到前n項和三、錯位相減法適用於差比數列(即等差乘以等比的數列)即把每一項都乘以的等比數列的公比,向後錯一項,再對應同次項相減,即可轉化為等比數列求和。如:等比數列的前項和就是用此法推導的。
  • 高中數學基礎課程,由前n項和Sn和an間的關係,求數列通項
    給出數列前n項和Sn和第n項an之間的關係式,求數列的通項,這類題的最常見做法是用n-1代換n,得到另一個等式,然後求它和已知中的等式的差,消掉S符號,只留下a符號,可以得到一個遞推等式,根據遞推等式就可以求出數列的通項公式。
  • 期末衝刺,高中理科數學數列求之列項相消法,解題方法指導
    數學中,解題的目的並不單純為了求得問題的結果,真正的目的是為了提高同學們的分析和解決問題的能力,培養同學們的創造精神。數學貴在堅持,貴在反思,最後能舉一反三,解決一類問題。那麼熟記等差數列和等比數列的通項公式,前n項和公式,是利用基本量和解方程(方程組)的思想,解決數列的首項和公差(公比)。利用裂項相消法求數列前n項和的的數列特點,先拆分再通分驗證等式兩邊是否相等,具體相消過程可以多寫幾項通過找規律,利用合情推理,歸納法找出特點,消掉哪些項?留著哪些項?最後的結果化簡到最簡潔。認真做每一道題,多思考,多歸納,多反思。
  • 吳國平:要拿到高考數學數列的分數, 就要學會求等差數列及其前n項和
    數列作為高考數學重點內容,一直是高考數學的熱點和必考的考點,自然而然受到廣大考生的關注。在高考數學裡數列一般就涉及等差數列和等比數列相關知識內容,因此,今天我們就一起來簡單講講等差數列及其前n項的和相關的考點,進行分析,希望能幫助到大家。什麼是等差數列?
  • 等比數列前n項和性質你能寫出多少?
    一、前言等比數列的求和公式之前已經講過了,如果沒有看過的讀者可以翻看一下之前發布的文章,現在需要明白等比數列的性質有哪些?但是在討論性質以前,要明白等比數列怎麼求?二、等比數列前n項和求等比數列的前n項和的過程中體現了兩種高中數學的思想:1)方程思想等比數列求和公式中有一個知三求二問題,這就是方程思想的體現。2)分類討論的思想在進行等比數列求和的過程中,由於等比數列的q是否為1,嚴重影響了等比數列求和的公式選取,這就用到了分類討論思想。
  • 考研數學|極限可用夾逼準則計算的n項和數列,就這3種類型!
    計算n項和數列極限是考研數學一個常見的考點。就其計算方法來說,主要有下面5種方法:(1)公式法:先利用數列求和公式求和,然後再求極限;(2)定積分法:n項和轉化為某一個函數特殊積分和的形式,利用定積分計算該積分和;(3)夾逼準則法:先利用和式數列或部分數列的單調性,將和式分別放縮成兩個極限相等的n項和數列,這兩個數列的極限就是所求極限;(4)冪級數法:將數列求和轉化為冪級數求和,求出和函數後再代入相應點的值
  • 《等比數列前n項和》說課稿
    尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《等比數列前n項和》。新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
  • 精選:高中數學數列經典試題+解題方法大全,從不懂到穩拿分!
    數列是高中數學的主幹知識,又有很強的滲透和輻射性,它與數、式、方程、函數、不等式、解析幾何等都有著密切的聯繫,所以數列專題一直是高中階段乃至高考複習的重點內容。你是否能熟練解決與數列有關的綜合性問題?如果不能,那就繼續往下看,我給同學們整理了高中數學數列部分的經典試題及解題方法,對於數列這塊薄如的同學們有救啦,把這份資料吃透,數列想扣分也難!
  • 高一到高三數學熱點難點吃透大全:數列通項公式必備的方法和技巧
    求數列通項公式是歷年高考數學的重點難點!大綱對這些要求如下1.了解數列的概念(定義、數列的項、通項公式、前n項和)2.了解數列三種簡單的表示方法(列表法、圖象法、通項公式法);3.了解數列是自變量為正整數的一類特殊函數,了解數列的分類(按項數分、按項間的大小等).
  • 多項式與等比數列乘積的前n項和的求解思路
    上篇文章中講到,等差數列和等比數列的通項公式,並分別推導了其前n項和公式。等差數列前n項和公式的推導用到了倒序相加法,等比數列前n項和公式用到了錯位相減法。雖然這兩種數列是最簡單、最基礎的數列,但從其前n項和的推導過程中,我們能夠學習和借鑑到其中的方法,下面我將演示利用錯位相減法求解更複雜的數列的前n項和。複雜數列構造及求解例如,定義這樣一種數列c,它的通項公式可寫成等差數列第n項和等比數列第n項乘積的形式。我們如何求解數列c的前n項和表達式?
  • 高中數學,學會巧湊等差數列前n項和公式,解題思路瞬間明朗
    在等差數列的一些題型中,需要湊出數列的前n項和公式,特別是在給出兩個等差數列前n項和的比值,求數列其中兩項的比值這樣的題型中,通過湊出前n項和公式會大大提高解題的效率。第1題分析:仔細分析下面的過程,理解如何一步一步把兩個等差數列項之比湊出前11項和之比(紅色部分)。第2題分析:本題藉助了等差中項,第n項是第1項和第2n-1項的等差中項,根據等差中項的性質把第n項的比值轉化為第1項與第2n-1的和的比值,然後再湊出前2n-1項和公式(紅色部分)。
  • 高中數學,求數列的最大(小)項的一些方法技巧
    數列中對於最大項最小項的求法也有一些,目前我們主要有兩種方法,一種是利用函數的最值法,另一種是不等式法一,函數最值法這是一個二次函數,根據二次函數的特點可以找出此數列的最大值以及最小值二,不等關係法利用數列最大項比前一項大比後一項也大的特點,可以根據數列的通項公式來列式計算數列的通項公式和遞推公式,在數列的學習中算是比較簡單的知識點,但類似於「累加法」和「累乘法」這種計算的技巧我們還是要學會熟練的使用最後謝謝大家關注,歡迎大家針對相關問題留言
  • 高中數學:關於等比數列及其前n項和問題的複習資料&PPT分享
    技巧總結歸納:1.在解決等比數列的有關問題時,要注意挖掘隱含條件,利用性質,特別是性質「若m+n=p+q,則a_m·a_n=a_p·a_q」,可以減少運算量,提高解題速度.2.等比數列的性質可以分為三類:一是通項公式的變形;二是等比中項的變形,三是前n項和公式的變形.根據題目條件,認真分析,發現具體的變化特徵即可找出解決問題的突破口.本文由Math實驗室原創文章,因圖片上傳格式問題,可能造成圖片模糊不清問題,如若需要相關可列印電子版文件可選擇關注哦~同時對於相關文檔下載可直接百度一下「Math實驗室」進入網站下載,也可私聊我留下郵箱哦!
  • 教學研討|2.5 等比數列的前n項和
    從在教材中的地位與作用來:看《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今後學習和工作中必備的數學素養。
  • 等差數列等比數列前n項和公式總結
    高中數列在教師資格和教師招聘考試中都是非常重要的考點,關於數列的考題雖然表面看去變化多樣,但看其本質,可歸結為兩大類:求一個數列的通項an,求一個數列的前n項和,而解決這兩類題都少不了等差數列以及等比數列的求和公式。這篇文章就針對等差和等比數列求和公式給出推導和證明過程。