高中數學,拿下數列大題第2講,證明等比數列及求前n項和

2021-01-08 孫老師數學

高中數學,拿下數列大題第2講,證明等比數列及求前n項和,高考數學專題訓練。

第(1)問,把證明{bn}是等比數列,轉化為證明①式成立,這是關鍵的第一步,能想到這一步,就有了證明的目標,接下來根據已知條件朝這個目標推理就可以了。

會使用a符號代換S符號是解決數列問題很重要的一個技能,如下,代換之後,很容易就可以得到我們需要的結論②。為了方便大家更好地學習數學,我在功眾號「愛做數學題」中把所有發布的課程和專題按照課本順序進行了分類整理。

第(2)問,數列{Cn}是由一個等差數列和一個等比數列相乘得到的,故需要使用錯項相減法求其前n項和。

錯項相減法的通用過程為:第一步,令n分別等於1、2、3、…、n,求出c1、c2、c3、…、cn,Tn等於這n項的和,以此列出一個等式,見③式;第二步,③式的兩邊分別乘以等比數列的公比,得到④式。

其中,④式中各項的位置相對於③式都向右錯一位,即第一項放在第二項的位置,第二項放在第三項的位置,以此類推。

第三步,令③式減去④式(右邊相減時,一定要使處在相同位置上的數相減),得到⑤式,⑤式的右邊一定會出現一個等比數列的前某些項的和,本題前n項是等比數列,然後使用前n項和公式求出這n項的和,最後進行化簡即可求出Tn。

相關焦點

  • 高中數學,數列綜合題,證明等比數列,常考題必須掌握
    這節課主要討論兩個問題:證明一個數列是等比數列,求一個非等差等比數列的通項;證明等比數列的方法一般是證明第n+1項與第n項的比是一個常數即可;求數列的通項是數列中最重要的問題,在綜合題中,一個數列直接求通項非常困難,往往要藉助另一個數列的通項間接地求出來。
  • 等比數列的前n項和到底怎麼求?
    一、前言等比數列的相關概念,通項公式之前已經講了,如果沒看,或者是不懂得讀者可以往前看一看,等差數列有前n項和,同樣的等比數列也有前n項和,那這前n項和到底怎麼求?二、等比數列前n項和等比數列的前n項和公式作者就直接給讀者們公布了:為什麼直接就公布了,因為等比數列的求和公式在高中階段只需要會用,就可以,沒有必要知道,等比數列求和公式是怎麼來的。三、對於上述公式的分析1)首先等比數列的通項公式與首項和公比有關。
  • 等差數列等比數列前n項和公式總結
    高中數列在教師資格和教師招聘考試中都是非常重要的考點,關於數列的考題雖然表面看去變化多樣,但看其本質,可歸結為兩大類:求一個數列的通項an,求一個數列的前n項和,而解決這兩類題都少不了等差數列以及等比數列的求和公式。這篇文章就針對等差和等比數列求和公式給出推導和證明過程。
  • 奇數項和偶數項是不同的等比數列,如何求前n項和,這方法不錯
    高考數學複習,奇數項和偶數項是不同的等比數列,如何求前n項和,這方法不錯。這種數列的特點是:奇數項和偶數項是公比相同而首項不同的等比數列,下面所講的前n項和的求法也僅適用於這一種數列。如果公比不同,就不能使用這種方法,在以後的課程中會詳細講解。
  • 等比數列前n項和性質你能寫出多少?
    一、前言等比數列的求和公式之前已經講過了,如果沒有看過的讀者可以翻看一下之前發布的文章,現在需要明白等比數列的性質有哪些?但是在討論性質以前,要明白等比數列怎麼求?二、等比數列前n項和求等比數列的前n項和的過程中體現了兩種高中數學的思想:1)方程思想等比數列求和公式中有一個知三求二問題,這就是方程思想的體現。2)分類討論的思想在進行等比數列求和的過程中,由於等比數列的q是否為1,嚴重影響了等比數列求和的公式選取,這就用到了分類討論思想。
  • 《等比數列前n項和》說課稿
    尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《等比數列前n項和》。新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
  • 高中數學:求數列前n項和的7種方法
    二、用公式法求數列的前n項和對等差數列、等比數列,求前n項和Sn可直接用等差、等比數列的前n項和公式進行求解。運用公式求解的注意事項:首先要注意公式的應用範圍,確定公式適用於這個數列之後,再計算。點撥:這道題只要經過簡單整理,就可以很明顯的看出:這個數列可以分解成兩個數列,一個等差數列,一個等比數列,再分別運用公式求和,最後把兩個數列的和再求和。三、用裂項相消法求數列的前n項和裂項相消法是將數列的一項拆成兩項或多項,使得前後項相抵消,留下有限項,從而求出數列的前n項和。
  • 教學研討|2.5 等比數列的前n項和
    設計思路如下:四、教學目標1、掌握等比數列的前n項和公式,能用等比數列的前n項和公式解決相關問題。2、通過等比數列的前n項和公式的推導過程,體會錯位相減法以及分類討論的思想方法。3、通過對等比數列的學習,發展數學應用意識,逐步認識數學的科學價值、應用價值,發展數學的理性思維。
  • 求數列前n項和,明明看著很簡單,為啥還是做不出來
    高考數學複習,求數列前n項和,明明看著很簡單,為啥還是做不出來。一般來說,數列題計算量不會很大,但要注意的小細節很多,稍不小心,要麼出錯,要麼無法進行下去。你可以試做一下這道形式簡單的高考數列大題,感受一下覺得不難,但又時時處處有障礙,很難順順暢暢完成的解題過程。
  • 多項式與等比數列乘積的前n項和的求解思路
    上篇文章中講到,等差數列和等比數列的通項公式,並分別推導了其前n項和公式。等差數列前n項和公式的推導用到了倒序相加法,等比數列前n項和公式用到了錯位相減法。雖然這兩種數列是最簡單、最基礎的數列,但從其前n項和的推導過程中,我們能夠學習和借鑑到其中的方法,下面我將演示利用錯位相減法求解更複雜的數列的前n項和。複雜數列構造及求解例如,定義這樣一種數列c,它的通項公式可寫成等差數列第n項和等比數列第n項乘積的形式。我們如何求解數列c的前n項和表達式?
  • 形如a(n+1)=(an)^2是什麼數列?只需一步它就能變成等比數列
    我們得出a(n+1)=(an)^2+an-1/4的目的是為了求出an通項公式,要想就出數列an通項公式,就要將an和a(n+1)的關係向等比數列或者等差數列的形式靠近,才能利用我們學過的等比數列和等差數列的知識點,將其數列an通項公式求解出來。所以要將a(n+1)=(an)^2+an-1/4變形向等比數列或者等差數列靠攏。
  • 《等比數列》~試講稿~高中數學
    剛才這位同學說了,他們的共同特點是後一項比前一項的比值是一個常數。那像這樣的數列叫做等比數列。之前我們學習了等差數列,現在請同學們總結一下等比數列的概念吧,哪位同學來分享一下自己的成果呢?穿紅色衣服的女同學來說一下吧,這位同學也總結得非常到位啊,請坐。一般地,如果一個數列從第二項起,每一項與前一項的比值是一個常數項,那麼我們就說這種數列是等比數列。
  • 從一道高考數列題探討數列前n項和求法
    這道題也是已知數列 {a} 的前n 項和 S 和通項公式 a 的關係。這樣,我們就得知了數列 {a} 是公差為1的等差數列,我們求出 a 就可以了,就可以得到通項公式 a ,a 我們直接帶入題目已知的關係式就能求得,過程如下所示 :該題第一小問很簡單,關鍵是第二小問,第二小問通過數列 {a} 構造出數列 {b} ,要求我們計算數列的前 n 項和 T ,首先我們將計算得到的 a 代進去可以得到 b ,如下所示:
  • 吳國平:要拿到高考數學數列的分數, 就要學會求等差數列及其前n項和
    數列作為高考數學重點內容,一直是高考數學的熱點和必考的考點,自然而然受到廣大考生的關注。在高考數學裡數列一般就涉及等差數列和等比數列相關知識內容,因此,今天我們就一起來簡單講講等差數列及其前n項的和相關的考點,進行分析,希望能幫助到大家。什麼是等差數列?
  • 等差數列與等比數列判定,利用數列基本性質,高考重點考題
    數列做為我們高中數學一塊非常重要的內容,並且數列的內容常常是利用各種公式的變換來求解數列的得數或是判定數列的性質,數列的考察往往比較的綜合,並且也有一定的難度,數列常常還可以作為載體,與函數解析式結合在一起進行考察,所以這也成了我們高考考題中的大熱題目,因為通過一道題便可以考察很多的數學知識點
  • 高中數學,等差、等比數列混合題,常規題型更要熟練掌握
    等差、等比數列混合題型屬於常規題型,解題思路基本相同:按照其中一種數列的通項公式展開已知中的各項,再根據另一種數列的性質列出等式即可;至於使用哪一種數列的通項公式展開已知中的各項,要根據實際題意以及計算方便與否來決定。
  • 練會這25道小題,等差等比數列各種計算再也難不住你,第1部分
    詳細如下:第02題把點的橫縱坐標代入直線方程得到①,根據等差數列的特點:下標和相等的兩項和相等,就可以求出a1+a201=4,最後使用等差數列前n項和公式即可求出S201的值。第03題等差數列前n項和有最大值,說明這是一個遞減數列,並且特點一般都是前若干項都是正數或0,之後各項都是負數,這是等差數列特有的特點。
  • 高中數學,等比數列運算方法比較,你覺得哪個更好
    在等比數列各種題型中,計算是重中之重,首先常規計算方法一定要熟練掌握,常規方法就是嚴格使用等比數列通項公式、前n項和公式和性質進行計算,這種運算方式雖然會有點兒繁瑣,但很有效;而藉助等比數列的特點進行計算往往會使解題過程簡單很多,有趣很多;下面咱們通過例題來分別體會這兩種運算方式的不同。
  • 高中數學:關於等比數列及其前n項和問題的複習資料&PPT分享
    技巧總結歸納:1.在解決等比數列的有關問題時,要注意挖掘隱含條件,利用性質,特別是性質「若m+n=p+q,則a_m·a_n=a_p·a_q」,可以減少運算量,提高解題速度.2.等比數列的性質可以分為三類:一是通項公式的變形;二是等比中項的變形,三是前n項和公式的變形.根據題目條件,認真分析,發現具體的變化特徵即可找出解決問題的突破口.本文由Math實驗室原創文章,因圖片上傳格式問題,可能造成圖片模糊不清問題,如若需要相關可列印電子版文件可選擇關注哦~同時對於相關文檔下載可直接百度一下「Math實驗室」進入網站下載,也可私聊我留下郵箱哦!
  • 高考數學必考:等差等比數列
    數列是高中數學的重要內容之一,也是高考的必考考點。等差等比數列作為兩種很特殊的數列,歷年來一直都是高考考查的熱點內容。所以掌握數列對同學們來說非常重要,那麼如何快速掌握數列的相關知識,並且能夠靈活運用呢?