-
特殊數列之等差數列與等比數列
特殊數列之等差數列等差數列是一種有特殊規律的數列,它的後面一項減去前面一項的差值是一個定值,其一般表示形式如下所示它的相鄰兩項具有統一性質的聯繫,其遞推關係為如果已知等差數列第1項,其第n項比第一項多出n-1個公差d,那麼其通項公式可表示為
-
高考數學必考:等差等比數列
數列是高中數學的重要內容之一,也是高考的必考考點。等差等比數列作為兩種很特殊的數列,歷年來一直都是高考考查的熱點內容。所以掌握數列對同學們來說非常重要,那麼如何快速掌握數列的相關知識,並且能夠靈活運用呢?
-
多項式與等比數列乘積的前n項和的求解思路
上篇文章中講到,等差數列和等比數列的通項公式,並分別推導了其前n項和公式。等差數列前n項和公式的推導用到了倒序相加法,等比數列前n項和公式用到了錯位相減法。雖然這兩種數列是最簡單、最基礎的數列,但從其前n項和的推導過程中,我們能夠學習和借鑑到其中的方法,下面我將演示利用錯位相減法求解更複雜的數列的前n項和。複雜數列構造及求解例如,定義這樣一種數列c,它的通項公式可寫成等差數列第n項和等比數列第n項乘積的形式。我們如何求解數列c的前n項和表達式?
-
《等比數列前n項和》說課稿
尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《等比數列前n項和》。新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
-
等比數列的前n項和到底怎麼求?
一、前言等比數列的相關概念,通項公式之前已經講了,如果沒看,或者是不懂得讀者可以往前看一看,等差數列有前n項和,同樣的等比數列也有前n項和,那這前n項和到底怎麼求?二、等比數列前n項和等比數列的前n項和公式作者就直接給讀者們公布了:為什麼直接就公布了,因為等比數列的求和公式在高中階段只需要會用,就可以,沒有必要知道,等比數列求和公式是怎麼來的。三、對於上述公式的分析1)首先等比數列的通項公式與首項和公比有關。
-
教學研討|2.5 等比數列的前n項和
二、學情分析從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對於q = 1這一特殊情況,學生往往容易忽視,尤其是在後面使用的過程中容易出錯。
-
[例題解析]等差數列與等比數列
例1.等差數列中,a3+a7-a10=8,a11-a4=4,求S13解:由求和公式例3.已知數列{an}的各項均為正數,且前n項之和Sn滿足6Sn=an2+3an+2.若a2,a4,a9成等比數列,求數列的通項公式。
-
等比數列公式
如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。
-
競賽(或高考):用待定係數法求數列的通項公式和前n項和
,只是我們不知道這種操作的術語這樣我們了解了階差數列的定義,用此定義再引申出一個新的概念n階等差數列顯然我們學習過的等差數列也就是就是一階等差數列,有關性質我們已經很屬性了,但不妨再回顧一下,以便幫助我們更好的理解今天要介紹的內容一階等差數列的遞推公式(特徵部分,或a(n+1) - an),通項公式,前n項和公式所關於n的多項式的此時分別是0,1,2,也就是次數依次加一
-
等差數列與等比數列判定,利用數列基本性質,高考重點考題
關於數列的知識我們一般看到的題目考察形式就是判定函數的數列關係,或者要求求出數列的通項公式,我們在判定數列的性質的時候通常採取的方法就是將後一項的通項公式用n+1表示出來,前一項的通項公式用n表示出來,然後根據題目中所要求的條件,進行兩個函數的相除或相減,如果可以得出一個常數,那麼我們就基本可以判定函數的性質。
-
初中數學公式:等比數列公式
中考網整理了關於初中數學公式:等比數列公式,希望對同學們有所幫助,僅供參考。 如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示。
-
吳國平:要拿到高考數學數列的分數, 就要學會求等差數列及其前n項和
數列作為高考數學重點內容,一直是高考數學的熱點和必考的考點,自然而然受到廣大考生的關注。在高考數學裡數列一般就涉及等差數列和等比數列相關知識內容,因此,今天我們就一起來簡單講講等差數列及其前n項的和相關的考點,進行分析,希望能幫助到大家。什麼是等差數列?
-
數列的通項公式求法總結
方法一:歸納,猜想數列的通項公式這種方法適用於數列規律性比較強,能明顯看出一般性規律的數列,並不常用。方法二:公式法利用等差或等比數列的通項公式這種適用於已知是等差或等比數列,或能證出是等差或等比數列,直接用公式法求數列。
-
形如a(n+1)=(an)^2是什麼數列?只需一步它就能變成等比數列
我們得出a(n+1)=(an)^2+an-1/4的目的是為了求出an通項公式,要想就出數列an通項公式,就要將an和a(n+1)的關係向等比數列或者等差數列的形式靠近,才能利用我們學過的等比數列和等差數列的知識點,將其數列an通項公式求解出來。所以要將a(n+1)=(an)^2+an-1/4變形向等比數列或者等差數列靠攏。
-
高中數學:求數列前n項和的7種方法
求數列的前n項和要藉助於通項公式,即先有通項公式,再在分析數列通項公式的基礎上,或分解為基本數列求和,或轉化為基本數列求和。當遇到具體問題時,要注意觀察數列的特點和規律,找到適合的方法解題。我們在學知識時,不但要知其果,更要索其因,知識的得出過程是知識的源頭,也是研究同一類知識的工具,例如:等差數列前n項和公式的推導,用的就是「倒序相加法」。例題1:設等差數列{an},公差為d,求證:{an}的前n項和Sn=n(a1+an)/2解析:Sn=a1+a2+a3+...
-
高中數學,拿下數列大題第2講,證明等比數列及求前n項和
高中數學,拿下數列大題第2講,證明等比數列及求前n項和,高考數學專題訓練。第(1)問,把證明{bn}是等比數列,轉化為證明①式成立,這是關鍵的第一步,能想到這一步,就有了證明的目標,接下來根據已知條件朝這個目標推理就可以了。
-
從一道高考數列題探討數列前n項和求法
這道題也是已知數列 {a} 的前n 項和 S 和通項公式 a 的關係。這樣,我們就得知了數列 {a} 是公差為1的等差數列,我們求出 a 就可以了,就可以得到通項公式 a ,a 我們直接帶入題目已知的關係式就能求得,過程如下所示 :該題第一小問很簡單,關鍵是第二小問,第二小問通過數列 {a} 構造出數列 {b} ,要求我們計算數列的前 n 項和 T ,首先我們將計算得到的 a 代進去可以得到 b ,如下所示:
-
2021初中八年級數學公式:等比數列公式
中考網整理了關於2021初中八年級數學公式:等比數列公式,希望對同學們有所幫助,僅供參考。 如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示。
-
等比數列的概念教學設計
一、複習導入:(1)等差數列的定義;(2)等差數列的通項公式;(3)計算公差d的方法;(4)等差中項的定義及公式.教師強調:判斷等比數列的標準後一項與前一項的比值是否是同一個常數。2.等比數列的通項公式 首項是a1,公比是q的等比數列{an}的通項公式可以表示為an = a1 q n-1.根據這個通項公式,只要已知首項a1和公比q,便可求得等比數列的任意項an.
-
《等比數列》~試講稿~高中數學
剛才這位同學說了,他們的共同特點是後一項比前一項的比值是一個常數。那像這樣的數列叫做等比數列。之前我們學習了等差數列,現在請同學們總結一下等比數列的概念吧,哪位同學來分享一下自己的成果呢?穿紅色衣服的女同學來說一下吧,這位同學也總結得非常到位啊,請坐。一般地,如果一個數列從第二項起,每一項與前一項的比值是一個常數項,那麼我們就說這種數列是等比數列。