精選:高中數學數列經典試題+解題方法大全,從不懂到穩拿分!

2021-01-09 ID是少年易學

數列是高中數學的主幹知識,又有很強的滲透和輻射性,它與數、式、方程、函數、不等式、解析幾何等都有著密切的聯繫,所以數列專題一直是高中階段乃至高考複習的重點內容。

高中數學每個課題下面都有它的基本規則,能把遊戲玩好的人肯定是熟悉規則的人,在這個規則下你應該掌握的知識包括等差等比的基本公式及定理,數列求和的常用思路,特徵數列的求解,等這些可以求得數列通項表達的技巧。

如果你覺得你數列方面的知識已經完全掌握了,那我問你2個問題:

你是否能夠綜合且靈活的利用數列相關的基本知識?

你是否能熟練解決與數列有關的綜合性問題?

如果不能,那就繼續往下看,我給同學們整理了高中數學數列部分的經典試題及解題方法,對於數列這塊薄如的同學們有救啦,把這份資料吃透,數列想扣分也難!

電子版免費獲取方式:1.關注;2.私信回覆:「數列」即可

基本公式及定理

以上是關於數列的基本公式,下面再來看看數列專題的二級公式,這些雖然不能直接用在大題裡,但是卻可以在做選擇題和填空題時,幫助同學們更快的得出答案。

了解了公式定理之後,就是解題方法了,下面給大家介紹幾種求數列的解題方法:

首先是求通項公式的三種解題方法:

1、求差、商法

2、疊乘法

3、遞推公式法

其次是求數列前n項和的幾種常用方法如下:

1、裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。

2、錯位相減法

3、倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。

等差數列求和公式

1.公式法

2.錯位相減法

3.求和公式

4.分組法

有一類數列,既不是等差數列,也不是等比數列,若將這類數列適當拆開,可分為幾個等差、等比或常見的數列,然後分別求和,再將其合併即可.

5.裂項相消法

適用於分式形式的通項公式,把一項拆成兩個或多個的差的形式,即an=f(n+1)-f(n),然後累加時抵消中間的許多項。

小結:此類變形的特點是將原數列每一項拆為兩項之後,其中中間的大部分項都互相抵消了。只剩下有限的幾項。

注意:餘下的項具有如下的特點

1、餘下的項前後的位置前後是對稱的。

2、餘下的項前後的正負性是相反的。

6.數學歸納法

一般地,證明一個與正整數n有關的命題,有如下步驟:

(1)證明當n取第一個值時命題成立;

(2)假設當n=k(k≥n的第一個值,k為自然數)時命題成立,證明當n=k+1時命題也成立。

例:

求證:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5

證明:

當n=1時,有:

1×2×3×4 = 24 = 2×3×4×5/5

假設命題在n=k時成立,於是:

1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5

則當n=k+1時有:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)

= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)

= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)

= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)

= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5

即n=k+1時原等式仍然成立,歸納得證

7.並項求和法

(常採用先試探後求和的方法)

例:1-2+3-4+5-6+……+(2n-1)-2n

方法一:(並項)

求出奇數項和偶數項的和,再相減。

方法二:

(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]

方法三:

構造新的數列,可借用等差數列與等比數列的複合。

an=n(-1)^(n+1)

(二)等差數列判定及其性質

等差數列的判定

(1)a(n+1)--a(n)=d (d為常數、n ∈N*)[或a(n)--a(n-1)=d,n ∈N*,n ≥2,d是常數]等價於{a(n)}成等差數列。

(2)2a(n+1)=a(n)+a(n+2) [n∈N*] 等價於{a(n)}成等差數列。

(3)a(n)=kn+b [k、b為常數,n∈N*] 等價於{a(n)}成等差數列。

(4)S(n)=A(n)^2 +B(n) [A、B為常數,A不為0,n ∈N* ]等價於{a(n)}為等差數列。

特殊性質

在有窮等差數列中,與首末兩項距離相等的兩項和相等。並且等於首末兩項之和;特別的,若項數為奇數,還等於中間項的2倍,

即,a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=···=2*a中

例:數列:1,3,5,7,9,11中a(1)+a(6)=12 ; a(2)+a(5)=12 ; a(3)+a(4)=12 ; 即,在有窮等差數列中,與首末兩項距離相等的兩項和相等。並且等於首末兩項之和。

數列:1,3,5,7,9中a(1)+a(5)=10 ; a(2)+a(4)=10 ; a(3)=5=[a(1)+a(5)]/2=[a(2)+a(4)]/2=10/2=5 ; 即,若項數為奇數,和等於中間項的2倍,另見,等差中項。

相關焦點

  • 高中數學難點解析——數列試題的解題方法與技巧,零基礎也能聽懂
    高中數學想要拿高分,必須學好數列。它不僅會在選擇題中出現,在大題中也常考察。通過分析歷年高考真題不難發現,數列部分的試題能佔20分左右。但大多數同學對這部分知識點掌握不好,跟不上老師傳授的答題技巧,時間和精力花了很多,就是學不會。如果你就是這種情況,那麼看到這篇文章就對了。
  • 高中數列專題:經典題目集錦(含答案)及題型精選,十分鐘解題!
    數列是高中數學的重要知識點,也是高考分值佔比較重的必考內容。數列主要分為兩大類,即等差數列和等比數列。高考中的數列題目基本上都是對數列基礎知識和相關解題方法,和與方程、函數、不等式、導數、圓錐曲線等綜合考查。
  • 高中數學數列壓軸題,50道經典例題帶詳解,給你洪荒之力
    2020-11-20 10:01:40 來源: 深夜來讀歷史 舉報   高中數學考試中
  • 高中數學大題題目類型有哪些?高中數學大題解題技巧匯總!
    數學可以說是高中生最重要的科目之一,不過高中數學有許多的大題題目類型,而且它們的求解思路也不同,不過在解題的時候,對於某些特殊情形的討論,卻很容易被忽略掉,也就是在轉化的過程中,沒有注意轉化的等價性,所以會經常出現錯誤,高中數學大題題目看起來比較難,但是通過多年的數學積累和經驗總結
  • 期末衝刺,高中理科數學數列求之列項相消法,解題方法指導
    數學中,解題的目的並不單純為了求得問題的結果,真正的目的是為了提高同學們的分析和解決問題的能力,培養同學們的創造精神。數學貴在堅持,貴在反思,最後能舉一反三,解決一類問題。那麼熟記等差數列和等比數列的通項公式,前n項和公式,是利用基本量和解方程(方程組)的思想,解決數列的首項和公差(公比)。利用裂項相消法求數列前n項和的的數列特點,先拆分再通分驗證等式兩邊是否相等,具體相消過程可以多寫幾項通過找規律,利用合情推理,歸納法找出特點,消掉哪些項?留著哪些項?最後的結果化簡到最簡潔。認真做每一道題,多思考,多歸納,多反思。
  • 高中數學公式大全:數列公式
    高中數學公式大全:數列公式 2013-01-11 15:54 來源:新東方網整理 作者:
  • 高中數學:數列大題精選50題含答案考點,近5年高考真題
    數列是高中重點知識點,也是難點,題目綜合性極強,常出現在壓軸題。其實,學好數列,不僅僅是掌握了其性質和公式就算是掌握了,要更深入地去進行深入了解其解題方法和思維,這對於今後大學高等數學的學習也很有幫助。
  • 高中數學 數列與不等式綜合之放縮法與經典不等式公式的理解應用
    高考中數學要想拿到高分,常規題目一定要做得又對又快,才有時間思考拉分題和每年的創新題。數列與不等式的綜合應用一般屬於中等或者中等偏上的難度,也是高考的熱點,是考生的必爭之地,數列不等式的高效解題成了關鍵,其常規解題方法必須熟練。
  • 高考數學——「數列」部分專講,10道例題講解應試技巧+解題思維
    在歷年高考數學的壓軸題中,有關數列的題型一直佔據著不可或缺的地位,往往讓很多同學無所適從.最典型的便是數列放縮題型,其內在的估計思想更是數學思想中的精髓.對於高中數學而言,數列這一部分內容主要包括數列通項與數列求和.又由於數列可視為一類特殊的函數,則其函數性質也會偶爾一展風採.
  • 高中數學,數列之解題思想總結!(經典例題詳解版)
    數列是高中代數的重要內容之一,首先數列可以視作函數,也就是正整數集到實數集的映射.但數列又有不同於高中大多數函數的特點,即數列有離散性.所以,數列與函數,方程,不等式,解析幾何,二項式定理等有較緊密的聯繫,又有自己鮮明的特徵,因此它是歷年高考考查的重點、熱點和難點.在高考中佔有極其重要的地位.
  • 數學技巧|高中數學數列問題,常用方法技巧都在這!
    高中數學數列題常用技巧 1 求差(商)法 5 倒數法 高中數學數列問題的答題技巧
  • 數學滿分題型之數列大題解題技巧,常規解題思路及步驟分析
    高中數學當中數列肯定是必考內容,其涉及到的知識點很多,相對來講也就無非與求數列通項、求和、以及數列的證明放縮,其次,基本題型就是利用兩種數列的基本性質對小題進行解答。而數列放縮往往是依據函數為背景建立,在往年各省市的單獨命題當中顯得尤為重要,甚至作為壓軸出場,難度較高。
  • 高一到高三數學熱點難點吃透大全:數列通項公式必備的方法和技巧
    求數列通項公式是歷年高考數學的重點難點!大綱對這些要求如下1.了解數列的概念(定義、數列的項、通項公式、前n項和)2.了解數列三種簡單的表示方法(列表法、圖象法、通項公式法);3.了解數列是自變量為正整數的一類特殊函數,了解數列的分類(按項數分、按項間的大小等).
  • 高考數學必考數列基本公式+考點知識+經典例題解法!
    2021-01-11 05:54:44 來源: 齊魯鄉村 舉報   數學
  • 高中數學公式大全:等差數列、等比數列
    高中數學公式大全:等差數列、等比數列 2019-02-15 15:36 來源:新東方網編輯整理 作者:
  • 高中數學等比數列求和公式拓展小技巧
    高中數學必修5----等比數列的求和公式拓展,等比數列求和公式原型是這樣的【點撥】等比數列的求和公式可以理解為指數函數的係數和常數項互為相反數
  • 高考數學7大考點和15種解題方法,列印收藏!
    數學意味著解題,解題就應該對數學思想、數學方法融會貫通,通過對下面這些解題的方法和技巧的介紹,希望對高中生的數學學習能有一定的幫助。(一)函數與導數函數與導數是高考數學中極為重要的一部分,函數的特點和方法貫穿了高中數學的全過程,主要是考函數的性質,如何利用導數作為工具來解答。
  • 高中數學班主任:導數和數列解題技巧之「函數構造法」滿分哪裡跑
    高考重在考察基礎,計算能力突出,基本方法紮實的學生更有可能在高考中取得好成績;有時候,即便高考只考計算和基本解題方法,很多學生還是敗下陣來,今天給大家分享【導數和數列解題技巧】的資料可以鍛鍊計算能力、解題方法和解題思維一樣重要,在平時的學習中都要重視!
  • 高中數學公式大全:數列求和及數列的簡單應用
    高中數學公式大全:數列求和及數列的簡單應用 2019-02-15 15:36 來源:新東方網編輯整理 作者:
  • 高考數學,數列中構造放縮經典方法,每天學一種方法,迎接高考!
    每天學一種方法,迎接高考!下面我們來看題目:經典題,2018,02,22這類問題數列單調性很重要,數列單調性的證明方法常規處理做差和作商處理;數列證明的方法,可正向或者逆向處理,對於陌生且很難處理的問題可採用數學歸納法。所以說,大家要注意平時學過的一些方法,比如數形結合的思想,特殊值法以及數學歸納法等。