世界最強輻射源:美開啟氘—氚受控核聚變實驗

2020-11-26 網易科技

(原標題:美核聚變研究開啟「氘—氚」新時代)

科技日報北京11月16日電 (記者張夢然)核聚變研究進入全新階段。據美國《科學》雜誌在線版15日消息稱,美能源部下屬桑迪亞國家實驗室日前在其世界最強輻射源——「Z機」(Z machine)裝置內開啟了氘—氚受控核聚變實驗。當未來氘—氚比例達到50∶50時,它所產生的能量將是現有最大能量的500倍。

受控核聚變若能成功,幾乎能使人類擺脫能源危機的困擾。其所需的原料——氫的同位素氘從海水中就可以提取,據估測,1升海水中提取出的氘若完全參與聚變反應,放出的能量相當於300升汽油燃燒釋放的能量。而氫的另一種同位素氚,又名超重氫,半衰期為12年,極為珍貴和危險,但它與氘之間的聚變卻最為容易,遠遠勝於目前常見的氘—氘聚變。

研究團隊將氚—氘的混合物加注到設備燃料中,在加入氚之後,「Z機」會激發出更大的能量,其原本已經很驚人的產生中子數上限將得到前所未有地大幅飆升,當燃料與強電磁場融合時,中子數會提高60倍至90倍,新混合燃料產生的能量也將是原來的500倍。

然而,這種方式不能一蹴而就,在實驗中第一次添加的氚僅用了不到氚總量的0.1%,在接下來5年中,繼續添加到燃料中的氚和氘比例才能達到50∶50。

該項目團隊高管邁克·庫尼奧表示,創造出如此巨大能源的設備此前從未出現過。與位於勞倫斯利弗莫爾國家實驗室的國家點火裝置(NIF)不同的是,「Z機」的磁場可以約束出現的α粒子,並沿著場線將它們捕獲,從而匯集更多的能量來維持聚變。

不過,氚分子體積太小容易滲透到設備的任何部位,使用時需在設施控制以及輻射防護方面達到相當高的要求,實驗必須非常謹慎地進行,團隊也將在可控制的情況下逐漸增加燃料投放比例。

圈點

核聚變稱得上是電力工業的「聖杯」,它清潔、低廉、安全,而且沒有限量。「Z機」是目前世界上最強大、最高效的實驗室脈衝輻射源,其利用強磁壓配合大電流,可模擬重現恆星及其內核的極端環境。同時,其在核聚變上的潛力為解決能源危機提供了一種可能,一經點燃,它便可以在七百億分之一秒的脈衝中釋放相當於全球發電總量80倍的電量。開啟「氘—氚」模式後,核聚變的未來又將開啟新的篇章。

本文來源:科技日報社-中國科技網 責任編輯:王鳳枝_NT2541

相關焦點

  • 美國突破「氘—氚」核聚變:是目前世界最強輻射源能量五百倍
    美國突破「氘—氚」核聚變:是目前世界最強輻射源能量五百倍 張夢然/科技日報 2016-11-17 07:32 來源:澎湃新聞
  • 最強能源加強500倍!美國啟動氘-氚受控核聚變
    核聚變研究進入全新階段。據美國《科學》雜誌在線版15日消息稱,美能源部下屬桑迪亞國家實驗室日前在其世界最強輻射源——「Z機」(Z machine)裝置內開啟了氘—氚受控核聚變實驗。當未來氘—氚比例達到50∶50時,它所產生的能量將是現有最大能量的500倍。
  • 美開啟「氘—氚」核聚變研究 能量將放大500倍
    核聚變研究進入全新階段。據美國《科學》雜誌在線版15日消息稱,美能源部下屬桑迪亞國家實驗室日前在其世界最強輻射源——「Z機」(Z machine)裝置內開啟了氘—氚受控核聚變實驗。當未來氘—氚比例達到50∶50時,它所產生的能量將是現有最大能量的500倍。 受控核聚變若能成功,幾乎能使人類擺脫能源危機的困擾。
  • 美核聚變研究開啟「氘—氚」新時代
    美核聚變研究開啟「氘—氚」新時代 世界最強輻射源能量將放大500倍 2016-11-17 科技日報 張夢然 據美國《科學》雜誌在線版11月15日消息稱,美能源部下屬桑迪亞國家實驗室日前在其世界最強輻射源——「Z機」(Z machine)裝置內開啟了氘—氚受控核聚變實驗。當未來氘—氚比例達到50∶50時,它所產生的能量將是現有最大能量的500倍。  受控核聚變若能成功,幾乎能使人類擺脫能源危機的困擾。
  • 強流中子源HINEG產生十二次方氘氚聚變中子—新聞—科學網
    中科院核能安全技術研究所
  • 可控核聚變鍾愛誰?氕氘氚中為何選擇了這種?
    核聚變是較輕的兩個原子核在一定條件下融合為一個較重的原子核並釋放出能量的過程。太陽上進行著核聚變並向外釋放著能量,人類使用的能源有很大的比例歸根到底就是來自於太陽能。目前人類雖然能夠依靠核聚變製造出氫彈,但是氫彈是不可控的,釋放的巨大能量並不能被人類利用。
  • 人類研究可控核聚變使用的是氚–氘,可以使用其他元素嗎?
    理論上任何低於鐵的元素都可以進行核聚變反應,並釋放大量能量,但是目前人類引發核聚變的手段,主要靠提高溫度,在所有核聚變當中,氫元素的核聚變反應所需溫度最低,其中又以氘-氚的聚變最容易實現。目前人類使用託卡馬克裝置,能穩定且持續達到的極限溫度是2億度,而且還是在壓力不高的情況下,根本無法點燃重元素的核聚變反應;如果不考慮反應溫度,那麼人類世界就能像《流浪地球》中的那樣,燒石頭就能獲取源源不斷的能源。為何是氘-氚,而不是氫的其他同位素組合?
  • 人類為什麼非要在「氚–氘」核聚變一棵樹上吊死?其他核聚變呢?
    人類能夠實現的核聚變主要是用的氫元素的兩種同位素氘和氚,氫元素的原子核裡只有一個質子,有一個中子的是氘,有兩個中子的是氚,沒有中子的是氕。哪些元素可以通過聚變釋放出能量,哪些元素可以通過裂變釋放出能量與比結合能有關。一般而言,比結合能越小,就越能夠聚變成新元素,並且釋放出的能量也相對較多。如下圖所示,氘的比結合能較小,非常適合用來做核聚變材料。
  • 核聚變能夠產生多大能量?從1千克海水提煉的氘相當於300升汽油
    氫的同位素氘原子和氚原子,當溫度升高到幾千萬甚至上億攝氏度時,原子核就有足夠的能量,克服各個原子之間的排斥力,在相互碰撞中聚合成為一個較重的原子核,這就是核聚變在聚變過程中可放出大量的能量。因為核聚變是在很高很高溫度下進行的,所以又叫熱核應。大陽和恆星內部時刻在進行核聚變,所以才放出巨大的光熱。人類希望利用核聚變獲得能量,也就是製造出人造的小太陽。人類希望聚變過程中釋放能量是可控制的,也就是可以控制核聚變的反應過程,這就叫做受控核聚變。
  • 磁場約束核聚變—託克馬克裝置
    2006年9月28日,中國耗時8年、耗資2億元人民幣自主設計、自主建造而成的新一代熱核聚變裝置EAST首次成功完成放電實驗,獲得電流200千安、時間接近3秒的高溫等離子體放電。EAST成為世界上第一個建成並真正運行的全超導非圓截面核聚變實驗裝置。早在1933年,即發現核裂變現象五年前,人類就發現了核聚變。雖然核裂變比核聚變發現得晚,但是很快就實現了核裂變爆炸。
  • 一分鐘了解,核聚變情況,體驗下新能源新動力
    核聚變熱核應,或原核之變應,具頗為新能源。參核應之輕原核,如氫、氕、氘、氚、鋰等從熱動得之,而致之聚變應。熱核乃為氫彈爆也,可於大熱,然非可用。若使熱核應在必約內,因人之意有控而制,即行受控熱核應。此正在究之題。
  • 為什麼造得了氫彈,卻造不出核聚變反應堆,技術難關有哪些?
    不久,科學家發現了一種與之相反的過程:核聚變。利用這一過程的武器被稱為核聚變炸彈、熱核炸彈或氫彈,核聚變炸彈具有比裂變炸彈更高的千噸當量和更高的效率。1952年,世界上第一顆氫彈研製成功了。隨後,科學家一直致力於把核聚變應用於民用領域——核聚變反應堆。它將使用豐富的燃料來源,且不會洩漏高於正常背景水平的輻射,而且它產生的放射性廢料將比目前的裂變反應堆少。
  • 核聚變發電是什麼?
    核聚變發電是什麼?核聚變是較輕的原子核聚合成較重的原子核的反應。這種反應必須在極高的溫度下進行,所以又叫做熱核反應。核聚變放出的能量比核裂變還要大10倍,是一種嶄新的能源。核聚變的原料主要是氫、氘和氚。
  • 未來將改變世界的新科技(2.可控核聚變)
    一.什麼是核聚變?核聚變是兩個較輕的原子核聚合為一個較重的原子核,並釋放出能量的過程。核聚變最有名的例子就是太陽了,太陽一直持續發生著核聚變反應,這種反應已經持續了50億年了。太陽核聚變反應主要藉助氫同位素——氘與氚的聚變。核聚變不會產生核裂變所出現的長期和高水平的核輻射,不產生核廢料,當然也不產生溫室氣體,基本不汙染環境。是未來最理想的能源。
  • 日本自然科學研究機構啟動氘實驗擬實現核聚變發電
    原標題:日本自然科學研究機構啟動氘實驗擬實現核聚變發電 據日本共同社3月7日報導,日本自然科學研究機構核聚變科學研究所7日啟動以等離子體高性能化為目的的氘實驗,並舉行了紀念儀式。該研究所力爭利用與太陽能量生成機制相同的核聚變來發電。
  • 日本科學研究所啟動氘實驗 擬實現核聚變發電
    ­  中新網3月7日電 據日本媒體報導,日本自然科學研究機構核聚變科學研究所7日啟動以等離子體高性能化為目的的氘實驗,並舉行了紀念儀式。該研究所力爭利用與太陽能量生成機制相同的核聚變來發電。­  據悉,核聚變是指構成原子的原子核與電子在超高溫下分離迴旋的「等離子體」狀態下,原子核互相撞擊成為另一重原子核的反應。核聚變發電則利用反應時產生的能量。
  • 核衰變、核裂變、核聚變區別(大眾科普)
    核聚變,即輕原子核(例如氘和氚)結合成較重原子核(例如氦)時放出巨大能量。因為化學是在分子、原子層次上研究物質性質,組成,結構與變化規律的科學,而核聚變是發生在原子核層面上的,所以核聚變不屬於化學變化。 熱核反應,或原子核的聚變反應,是當前很有前途的新能源。
  • 全超導託卡馬克核聚變實驗裝置
    受控核裂變技術的發展已使裂變能的應用實現了商用化,如核(裂變)電站。裂變需要的鈾等重金屬元素在地球上含量稀少,而且常規裂變反應堆會產生放射性較強的核廢料,這些因素限制了裂變能的發展。聚變能是兩個較輕的原子核聚合為一個較重的原子核並釋放出的能量。目前開展的受控核聚變研究正是致力於實現聚變能的和平利用。其實,人類已經實現了氘氚核聚變--氫彈爆炸,但那是不可控制的瞬間能量釋放,人類更需要受控核聚變。
  • 世界最大核聚裝置造出氫等離子體
    據美國麻省理工學院(MIT)《技術評論》雜誌網站報導,德國總理默克爾3日開啟了迄今最大的仿星器核聚變反應設備「螺旋石7-X」。該設備首次製造出氫等離子體,向實現受控核聚變邁出重要一步。
  • 人造小太陽之磁約束核聚變 | 中國工程院院刊
    我國正式參加了國際熱核聚變實驗堆(ITER)項目的建設和研究,同時正在自主設計、研發中國聚變工程試驗堆(CFETR)。 磁約束聚變通過低密度長時間燃燒的方式實現氘、氚等離子體的自持燃燒,並將這種燃燒維持下去。 世界上的磁約束聚變裝置主要有託卡馬克、仿星器、磁鏡三種類型,其中託卡馬克最容易接近聚變條件而且發展最快。