中考數學:全等三角形存在問題如何分類討論?1張圖讓你輕鬆掌握

2020-12-03 老Z講數學

#中考數學複習#全等三角形存在性問題是中考常考的熱點習題。那麼它的難點在於尋找分類標準和計算.分類標準尋找的恰當,將大大降低我們解題的難度。

中考數學壓軸題,分類標準該如何確定

1、公共邊作為對應邊,對應頂點是一致的,即AB=AB(如△ABC ≌△BAD2),此時公共邊AB是作為角平分線存在的;

2、 公共邊作為對應邊,對應頂點是不一致的,即AB=BA,此時分成兩種情況

公共邊AB作為四邊形對角線存在(另外兩點在公共邊AB兩側),

此時構成平行四邊形(如平行四邊形ABCD3);

公共邊AB作為四邊形一邊存在(另外兩點在公共邊AB同側),

此時構成等腰梯形(如平行四邊形ABD1C).

分類討論示意圖

兩個三角形有一條公共邊,證明時該如何分類

關於怎樣分類,若題目出現「△ABD與巳知△ABC全等,D為動點」,則往往分兩類:

① 當△ABC≌△ABD時,如右圖中的點D2;

② 當△ABC≌△BAD時,如右圖中的點D1、D3.

也可按點D和C在公共邊AB的同側、異側分類。若點C也為動點,由於點C確定則點D就確定,往往先按動點C在圖形中的位置不同而先分大類,再按動點D的位置分類。圖中兩個重疊的平行四邊形包含了所有的點D當然,分類應結合具體的圖形靈活分類.

例題

如圖,拋物線y=0.5*x-3x-8與x軸交於A,B兩點,與y軸交於點C,直線l經過原點O,與拋物線的一個交點為D(6,-8),與拋物線的對稱軸交於點E,連接CE.若點F在拋物線上,使△FOE≌△FCE,則點F的坐標為____________.

題目示意圖
習題答案

大家對於這類問題,有什麼好的解法或者建議,可以在文章下方留言評論。

相關焦點

  • 中考數學:二次函數與等腰直角三角形存在性問題,題型變幻莫測?
    就拿二次函數與等腰直角三角形的相結合的綜合問題來說,涉及到的知識點有:等腰直角三角形的性質、直角三角形的性質、斜邊的中線、全等三角形與相似三角形、角平分線、方程與函數模型、函數的基本性質等。而正在就讀初三的你,如何在這眾多的知識點中,找到最最適合的方法?這裡,我們將等腰直角三角形與二次函數綜合問題分為三種題型。
  • 八年級數學,一次函數與全等三角形綜合,動點存在性問題難度大
    初二數學培優,一次函數中三角形面積問題,要掌握五類題型一次函數也會與全等三角形結合起來考查,一般有兩種考查方式,第一種是利用全等三角形求解點的坐標,進而轉化為函數問題;另外一類是動點存在性問題,難度較大。
  • 全等三角形動點問題,化動為靜,分類討論,學會解題方法
    全等三角形太難了?那是因為你還沒有掌握這些常見模型和輔助線幾何動點問題充分體現了數學中的「變」與「不變」的和諧統一,其特點是圖形中的某些元素或某部分幾何圖形按一定的規律運動變化,從而引發其它一些元素的數量、位置關係、圖形面積等發生變化。全等三角形動點問題將幾何與代數相結合,考查數形結合思想、分類討論思想,題目靈活多變,綜合性強。
  • 如果連全等三角形都不會,中考幾何也就只有看看的份
    全等三角形作為初中數學有關三角形知識的重要基礎內容,不僅是關係到三角形的學習,更關乎後面四邊形等眾多幾何的學習,非常重要,因此三角形全等有關的知識概念和題型,一直是中考數學必考內容之一。毫不誇張地說,如果你不會全等三角形,那麼幾何不可能好到哪裡去。
  • 中考數學複習第12課時,三角形與全等常考的7個考點總結
    抗擊新型冠狀病毒,你我在形動!這次課是我們中考數學複習的第12課時,我梳理了三角形與全等,總結了7個考點,希望能幫助大家宅在家複習。考點一:三角形的有關概念及分類數學概念的理解和應用是數學最本質的內容之一,縱觀近幾年中考試卷,對概念的考查更加重視;所以對三角形的概念及分類我們還是理解清楚。組成三角形的三條線段滿足兩個條件:(1)不在同一直線上,(2)首尾順次相連。而對於三角形的分類,要弄清楚分類標準。
  • 2021年中考數學知識點:三角形
    中考網整理了關於2021年中考數學知識點:三角形,希望對同學們有所幫助,僅供參考。   易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特徵與區別。   易錯點2:三角形三邊之間的不等關係,注意其中的「任何兩邊」。最短距離的方法。
  • 中考數學壓軸題:該省連續三年考動點與三角形,網友:2020年呢?
    比如新疆的中考數學,連續三年都是因動點產生的三角形問題。而且動點產生的相似三角形問題烏魯木齊市連續考了2年!不妨,我們一起看一看真題,究竟難度如何!點評:因動點產生的等腰三角形問題,一定要注意分類討論思想的運用。
  • 新課標:初中數學全等三角形證明題50道!考試必考,務必列印收藏
    新課標:初中數學全等三角形證明題50道!考試必考,務必列印收藏隨著新課標的不斷實施,初中各科的教材也是發生了翻天覆地的變化,以數學這門學科為例,原先的話對全等三角形這部分知識點考察甚少,而現在的話不僅在選擇、填空題當中有所出現,在綜合解答題當中也是經常考察的。以解答題的前兩道為例,幾乎都是對全等三角形的一個考察,那麼這部分試題應該如何解答呢?
  • 中考數學:直角三角形存在性問題,2種方法教你搞定動點壓軸題
    #近幾年各地的數學中考中,探索因動點產生的存在性問題頻頻岀現,這類試題的知識覆蓋面較廣, 綜合性較強,題意構思精巧,要求學生有較高的分析問題、解決問題的能力。這類問題識記上是有據可依、有法可解的,在此通過系統的整理,將這類問題的解題策略結合例題進行綜合性的一個闡述,希望能對廣大同學解決此類問題有所幫助那麼,我們今天呢,就講解一下直角三角形存在性問題,到底該如何解決!
  • 中考數學——全等三角形的概念及性質
    圖2我們不難發現,以上圖形他們分別疊在一起是可以重合的。在數學上,我們將能夠完全重合的兩個圖形稱為全等形。全等三角形1.全等三角形的定義那麼下面各圖中的兩個三角形是全等形嗎?我們可以嘗試將他們疊在一起看是否重合。
  • 「中考數學」與全等三角形有關的證明與計算
    與全等三角形有關的證明與計算是中考命題的熱點,也是解答諸多幾何綜合題的關鍵知識,想要在中考取得好成績,全等三角形不容小覷。「七嘴八舌」說考情陝西、雲南說:在解答題中考查,以三角形或四邊形為背景,直接證明三角形全等或通過三角形全等證明角相等、線段相等或平行。
  • 2021年初中七年級數學知識點:全等三角形
    中考網整理了關於2021年初中七年級數學知識點:全等三角形,希望對同學們有所幫助,僅供參考。   (一)、基本概念   1、「全等」的理解全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;   即能夠完全重合的兩個圖形叫全等形。同樣我們把能夠完全重合的兩個三角形叫做全等三角形。
  • 初中數學中考難點:九年級數學上冊圓及幾何動點最值問題考點解讀
    【正文】中考數學四大難點:函數、三角形、圓、幾何動點最值問題,為了初中學生能夠系統學習整個中考內容,我將初中數學全部內容用十個專欄進行了梳理。其中代數部分5個,幾何部分4個,概率統計1個,對中考數學進行了從入門到精通講解,從考點出發,系統學習各章節知識,將中考題型分類講解。可以做到從零基礎起步,迅速掌握圓的通性通法和秒殺技巧,學透學會所有題型。
  • 全等三角形判定之邊邊邊定理的運用,注意挖掘題中隱含條件
    八年級數學中,全等三角形的判定是中考中要求最高的等級,掌握全等三角形的判定,學會證明兩個三角形的全等,然後利用全等三角形的性質進行判定對應邊相等,對應角相等。而證明三角形全等的方法很多,需要同學們根據給定的條件,靈活的選擇合適的判定方法,並且能夠綜合的運用本章的知識,進行題目的解答。
  • 2021年初中七年級數學知識點:三角形易錯知識點
    中考網整理了關於2021年初中七年級數學知識點:三角形易錯知識點,希望對同學們有所幫助,僅供參考。   易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特徵與區別。   易錯點2:三角形三邊之間的不等關係,注意其中的「任何兩邊」。求最短距離的方法。
  • 如果連三角形都沒掌握好,幾何就不要想取得高分
    就像一個人沒有掌握好三角形的相關知識,那麼不可能學好幾何,因為三角形是整個幾何王國的重要基礎,如四邊形的對角線一連就是分成三角形進行解決。因此,如果你想學好幾何,想在幾何內容中取得高分,那就必須完全掌握好三角形,特別是在即將到來的暑假,更要好好學習三角形。
  • 初二數學難題,直角邊上動點如何構成全等三角形?分兩種情況討論
    判定全等三角形的條件是初二數學的重要知識點,本文就例題詳細解析如何運用全等三角形的判定定理求解直角邊上的動點構成全等的條件,希望能給初二學生的數學學習帶來幫助。>根據結論:∠PCO=90°,∠PCO+∠POC+∠CPO=180°,則∠POC+∠CPO=90°;根據結論:∠POC+∠QOD=90°,∠POC+∠CPO=90°,則∠QOD=∠CPO;根據全等三角形的判定和結論:兩組對應角及其中一組對應角的對邊分別相等的兩個三角形全等,∠PCO=∠QDO=90°,∠QOD=∠CPO,
  • 中考數學壓軸題,直角三角形的存在性問題,從三方面學習易有所獲
    人人學有用的數學;不同的人在數學上得到不同的發展。數學課堂致力於考點歸納,解題方法和學習方法總結,為中學生學好數學努力!直角三角形的存在性問題考查學生的探尋能力和分類研究的推理能力,也是近幾年來各市地對學生能力提高方面的一個考查熱點。
  • 中考數學壓軸題,如何解二次函數與正方形綜合問題
    正方形與二次函數作為初中數學最重要知識內容之一,一直是中考數學熱點和重點。像二次函數的重要性,相信不要老師多說,它一直是中考數學必考的熱點,超過90%以上的壓軸題都和二次函數有關。正方形作為一種特殊的平行四邊形,不僅具有一般平行四邊形所有性質,更具自身特殊的性質,如:1、具有平行四邊形、矩形、菱形的一切性質;2、正方形的四個角都是直角,四條邊都相等;3、正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角;4、正方形是軸對稱圖形,有4條對稱軸;5、正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
  • 中考三角形中常見陷阱大全
    陷阱2:在論證三角形全等、三角形相似等問題時,對應點或者對應邊容易出錯。注意邊邊角(SSA)不能證兩個三角形全等。全等三角形秘籍:全等判定三條件,總得有邊方實現,已知元素圖上標,邊角關係清晰見,三邊對等最易找,兩邊一角需夾角,兩角一邊任意邊,角角邊或角邊角,三角抑或邊邊角,不能全等莫推導。