中考數學壓軸題,如何解二次函數與正方形綜合問題

2021-01-08 吳國平數學教育

什麼是正方形?

有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形。

什麼是二次函數?

一般地,如果y=ax2+bx+c(a,b,c是常數,a≠0),那麼y叫做x 的二次函數。

y=ax2+bx+c(a,b,c是常數,a≠0)叫做二次函數的一般式。

正方形與二次函數作為初中數學最重要知識內容之一,一直是中考數學熱點和重點。像二次函數的重要性,相信不要老師多說,它一直是中考數學必考的熱點,超過90%以上的壓軸題都和二次函數有關。

正方形作為一種特殊的平行四邊形,不僅具有一般平行四邊形所有性質,更具自身特殊的性質,如:

1、具有平行四邊形、矩形、菱形的一切性質;

2、正方形的四個角都是直角,四條邊都相等;

3、正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角;

4、正方形是軸對稱圖形,有4條對稱軸;

5、正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

6、正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。

因此,在中考數學中,若把二次函數和正方形放在一起,就可以「創造」出很多具有綜合性強、創新型、解法靈活等鮮明特點的題型。

中考數學,二次函數與正方形相關題型,典型例題分析1:

巳知二次函數y=a(x2-6x+8)(a>0)的圖象與x軸分別交於點A、B,與y軸交於點C.點D是拋物線的頂點.(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點O的對應點0'恰好落在該拋物線的 對稱軸上,求實數a的值;(2)如圖②,在正方形EFGH中,點E、F的坐標分別是(4,4)、(4,3),邊HG位於邊EF的 右側.小林同學經過探索後發現了一個正確的命題:「若點P是邊EH或邊HG上的任意一點,則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應相等 (即這四條線段不能構成平行四邊形).「若點P是邊EF或邊FG上的任意一點,剛才的結論是否也成立?請你積極探索,並寫出探索過程;(3)如圖②,當點P在拋物線對稱軸上時,設點P的縱坐標l是大於3的常數,試問:是否存在一個正數阿a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應相等 (即這四條線段能構成平行四邊形)?請說明理由.

考點分析:

二次函數綜合題.

題幹分析:

(1)本題需先求出拋物線與x軸交點坐標和對稱軸,再根據∠OAC=60°得出AO,從而求出a.(2)本題需先分兩種情況進行討論,當P是EF上任意一點時,可得PC>PB,從而得出PB≠PA,PB≠PC,PB≠PD,即可求出線段PA、PB、PC、PD不能構成平行四邊形.(3)本題需先得出PA=PB,再由PC=PD,列出關於t與a的方程,從而得出a的值,即可求出答案.

解題反思:

本題主要考查了二次函數的綜合問題,在解題時要注意運用數形結合和分類討論,把二次函數的圖象與性質和平行四邊形的判定相結合是本題的關鍵.

二次函數與正方形相關題型本質上就是函數與幾何綜合類問題,此類問題一直是中考數學的熱點。要想正確解決此類問題,除了要掌握好相應的幾何知識和函數知識,更需要考生能根據圖形的變化,找出變量之間的關係,從而建立起函數解析式。

函數與幾何綜合問題最大的特點就是「數」與「形」相互結合、相互滲透,二次函數與正方形相關的綜合問題也不例外。

中考數學,二次函數與正方形相關題型,典型例題分析2:

如圖所示,在平面直角坐標系xoy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B和D(4,-2/3).

(1)求拋物線的表達式.

(2)如果點P由點A出發沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發,沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動。設S=PQ2(cm2).

①試求出S與運動時間t之間的函數關係式,並寫出t的取值範圍;

②當S取5/4時,在拋物線上是否存在點R,使得以點P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.

考點分析:

二次函數綜合題;待定係數法求一次函數解析式;二次函數圖象上點的坐標特徵;待定係數法求二次函數解析式;勾股定理;平行四邊形的性質.

題幹分析:

(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出,②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為三種情況:A、B、C即可根據平行四邊形的性質求出R的坐標.(3)A關於拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標。

解題反思:

本題主要考查了用待定係數法求一次函數和二次函數的解析式,勾股定理,平行四邊形的性質,二次函數圖象上點的坐標特徵等知識點,解此題的關鍵是綜合運用這些知識進行計算。此題綜合性強,是一道難度較大的題目。

相關焦點

  • 二次函數壓軸題系列3-教你一個公式解決二次函數與面積問題
    每年中考數學壓軸題都重點考查了與二次函數相關的問題,二次函數與面積問題也是考查的重點之一。老師朋友無私分享了解決二次函數與面積問題與眾不同的辦法,即使對於基礎不好的學生也容易記住,我在此整理好,分享給大家。本文分三部分分享完本次內容:一,重要結論的介紹。
  • 中考數學:四種不同類型的二次函數壓軸題,考前必刷
    中考數學壓軸題,要麼二次函數,要麼幾何,或者將這二者結合,我們稱之為代幾綜合。其實,純二次函數壓軸題(韋達定理的運用、二次方程的計算等結合的題型)在中考中非常少見,一般二次函數壓軸題都會與幾何相結合。5、其他問題:線段比不變、線段倒數和等。下面,我們從福建省的近三年中考數學分析,到底會考哪幾種類型的二次函數壓軸題。二次函數與線段、面積2017年福建省中考數學最後一道大題吐槽:此題無圖無真相!解題的關鍵是正確畫出標準的圖像。為什麼要強調標準,因為圖形越標準,對自己的分析越有利!還可以節約時間!
  • 中考數學衝刺:函數壓軸題VS幾何壓軸題,哪個更難?
    函數壓軸題PK幾何壓軸題,哪個更難,更令考生崩潰?函數作為初中數學的一大版塊,在中考數學中所佔的分值絕對是最高的。尤其是函數壓軸題,幾乎年年考,年年讓一大批考生欲哭無淚。究竟函數壓軸題有多難?能讓眾多考生望而生畏?下面精選一道基礎的函數壓軸題,以供參考!
  • 初三數學期末考試題,壓軸題又是架橋選址問題,很重要!
    期末考試要來了,對於初三畢業生來說,其實中考也並不遙遠。所以壓軸題就撲面而來了。現在是初三上學期,其實不少學校已經基本把初三的全部內容都上完了,剩下半學期基本就是複習衝刺了。北師大版本數學九年級期末考試的試卷主要由以下內容構成:1,特殊平行四邊形(菱形的性質與判定,矩形的性質與判定,正方形的性質與判定),通常會有一道證明加計劃的大題,一道比較難的選擇題(本套試卷的選擇壓軸題12題)。2,一元二次方程(概念,性質,解法,應用,根的判別式和韋達定理),解方程和應用題是必考題。
  • 二次函數壓軸題,助你戰勝史上最難中考季……
    二次函數綜合,歷來都是中考數學的壓軸題。無論是北上廣深這些一線城市,還是落後地區的小縣城,戰勝二次函數壓軸題,必能戰勝中考!下面精選幾道去年的二次函數模擬題,助你戰勝史上最難的2020年中考!經典例題一【考點】待定係數法求二次函數解析式,等腰三角形的性質,矩形的性質,二次函數圖像上點的坐標特徵【解析】【分析】(1)由矩形的性質求出點C的坐標,將B、C的坐標代入拋物線解析式中,求出b,c的值即可;利用待定係數法求出直線AD的解析式,然後聯立二次函數與直線
  • 中考數學:最後的選擇題、幾何或函數壓軸題,哪一道讓你崩潰?
    中考數學,每一年的考試都有難題,而每一道難題都讓不少學生花費不少時間、絞盡腦汁,也很難算出最後的正確答案。比如最後一道選擇題或填空題,最後一道大題(單壓軸題)或最後兩道大題(雙壓軸題)。所需的時間佔據中考時間的35%以上,所佔分值卻只有25%不到,這種吃力不討好的事情,讓眾多學生崩潰。那麼,最後的選擇題或填空題,幾何壓軸題與二次函數壓軸題,哪一道讓你崩潰呢?
  • 二次函數中考複習指導,學會求解二次函數代數應用相關問題
    如它可以單獨命題,也可以二次函數相關知識內容為背景,結合其他數學知識內容,形成更為複雜的綜合問題,像函數綜合問題、二次函數與幾何綜合問題、二次函數的代數應用等等,這些題型都需要考生具有較強的知識應用能力,能把基礎基礎知識構築成知識網絡等。每一年中考數學複習,老師都會強調二次函數的重要性,叮囑學生做好二次函數的複習工作。
  • 中考數學壓軸題,幾何圖形上的動點問題
    提到中考數學壓軸題,估計很多人都會認為必考二次函數綜合題。其實不然,因為幾何圖形上的動點問題也是常考的題型之一。下面就分享幾道往年的中考壓軸題,這些題特殊幾何圖形上的動點問題。2010年廣東省考以矩形為背景的動點問題。
  • 二次函數壓軸題,這幾道題堪稱經典
    二次函數作為壓軸題常考的類型,每年都有不同的地區考到。但是有些題因太難被詬病,也有些因太簡單而被人們淡忘,在2013年的中考中,這幾道題堪稱經典,層有不少學校的模擬考試中都出現過。2013年巴中考查對用待定係數法求一次函數、二次函數的解析式,勾股定理及勾股定理的逆定理,解二元一次方程組,二次函數的最值,切線的判定等知識點的連接和掌握,能綜合運用這些性質進行推理和計算是解此題的關鍵。如圖,在平面直角坐標系中,坐標原點為O,A點坐標為(4,0),B點坐標為(﹣1,0),以AB的中點P為圓心,AB為直徑作⊙P的正半軸交於點C。
  • 不要怕參數,更不要怕參數多,解含參二次函數壓軸題
    不要怕參數,更不要怕參數多,解含參二次函數壓軸題在有些地區的中考壓軸題中,二次函數幾乎成為命題的首選,原因當然是它能綜合的內容比較多,本身也足夠複雜。較為簡單的情況下,會給出二次函數解析式,如果含有參數,第一小問也能給出條件解決;較為複雜的情況下,參數無法消去,得一直留著。針對後者,變化較多,難度也較大。
  • 昆明近10年中考數學壓軸題,難度變化不大,這類題十年六考
    人人學有用的數學;不同的人在數學上得到不同的發展。數學課堂致力於考點歸納,解題方法和學習方法總結,傳播正能量!古有名言:「以史為鏡,可以知興衰;以人為鏡,可以知得失。」對於中考數學壓軸題,我們回顧往年中考真題,不難從中找到一些規律。
  • 吳國平:如何求解中考數學當中,函數最值類問題
    雖然全國各地中考試卷都不太一樣,但很多熱門考點都差不多。我們認真去研究近幾年全國各地中考數學試卷,會發現很多地方都會把求函數最值問題作為壓軸題的考點。中考數學壓軸題若考到最值問題,絕大部分都是與二次函數相結合。同時二次函數作為初中數學當中最為複雜、難度較高的函數,這就使最值問題更具有難度性、靈活性,突出考查學生綜合能力。
  • 中考數學壓軸題有哪些類型?如何解題,這4種方法最常見
    在數學中,每次考試總會有一道壓軸題,特別是在大考中,壓軸題考查學生的綜合能力,涉及的知識點多,解題時思路難覓,對不少同學來說,壓軸題的難度很大。在初中階段,數學壓軸題難度還沒有那麼高,小星今天整理了壓軸題的幾種常見的解題思路,一起來看看吧。
  • 中考數學:平移變換中的最值問題怎麼求?不妨試一下二次函數……
    如何利用二次函數解決平移變換中的最值問題圖形變換,中考壓軸題中最常見的一種類型。而比較常見的圖形變換無非就三種:平移、旋轉、對稱。(1)對稱:軸對稱和中心對稱;解題時牢牢抓住對稱軸,相等的線段,相等的角等不變的量是解題的關鍵。(2)旋轉:常見類型有旋轉60°、90°等特殊角,當然也會出現任意角。
  • 近兩年中考數學壓軸題精選,備戰2020中考的你,好難,怕?不怕!
    【點評】本題考查圓的綜合問題,涉及圓周角定理,勾股定理,相似三角形的判定與性質,含30度角的直角三角形性質,解方程等知識,綜合程度較高,需要學生靈活運用所學知識.函數壓軸題1【分析】(1)找到拋物線頂點坐標即可找到平移方式.
  • 中考數學熱門壓軸題重點講解:如何解二次函數綜合題
    如圖1,已知二次函數y=ax2+bx+c(a、b、c為常數,a≠0)的圖象過點O(0,0)和點A(4,0),函數圖象最低點M的縱坐標為﹣8/3,直線l的解析式為y=x.(1)求二次函數的解析式;(2)直線l沿x軸向右平移,得直線l′,l′與線段OA相交於點B,與x軸下方的拋物線相交於點C,過點C作CE⊥x軸於點E,把△BCE沿直線l′摺疊,當點E恰好落在拋物線上點E′時(圖2),求直線l′的解析式;(3)在(2)的條件下,l′與y軸交於點N,把△BON繞點O逆時針旋轉135°得到△B′ON′,P為l′上的動點,當△PB′N
  • 2020恩施州中考二次函數壓軸題解析(二次函數與旋轉,交點問題)
    2020年恩施州中考二次函數壓軸題解析解題難點分析:第1問 待定係數法求二次函數解析式,常規送分,所有學生都要會做。第2問,難度較大,①先要畫出具體旋轉後的圖形,②找到45度特殊角,③設出直線EF方程解析式 ④直線方程與二次函數方程聯立,利用判別式等於零,解決二次函數圖像與一次函數圖像的交點問題。
  • 函數與幾何壓軸題不一定只是考二次函數,還有它,千萬別丟分
    大家都知道函數相關知識內容一直是中考數學的重難點、熱點,必考內容之一。縱觀歷年全國各地中考數學試卷,我們可以很直觀的發現,函數所佔的分值較高,甚至全國大多數的中考數學壓軸題都是以函數為知識背景。一次函數作為初中數學三大函數之一,自然受到中考數學命題的特別青睞。
  • 2020初三數學複習:當二次函數遇到綜合問題,壓軸題的那些事兒
    #本單元是《與二次函數有關的綜合問題》,主體是二次函數,重點是綜合問題。本單元的主要考查點是二次函數的綜合題,涉及的知識點有:待定係數法求二次函數解析式,待定係數法求一次函數解析式,軸對稱的性質,全等三角形的判定和性質,等邊三角形的判定與性質,銳角三角函數等知識,綜合性較強,有一定的難度.
  • 中考數學,代數和幾何綜合題,學生:這是各個地區常見的壓軸題
    中考數學試卷的最後一道題,各個地區有所不同,但代數和幾何綜合類型的還是最多的,這類題目大多都是在直角坐標系當中,運用數形結合的思想,有通過函數的方法得到幾何圖形的性質,也有在幾何圖形中利用代數的知識求解線段長等。