科學家開發出更高活性的腺嘌呤鹼基編輯器
作者:
小柯機器人發布時間:2020/4/16 11:55:30
美國 Beam Therapeutics公司Giuseppe Ciaramella、Nicole M. Gaudelli等研究人員,合作開發了具有更高活性和更廣應用前景的腺嘌呤鹼基編輯器。相關論文於2020年4月13日在線發表於《自然—生物技術》。
研究人員使用腺苷脫氨酶變體庫進一步進化了ABE7.10,從而產生了ABE8。與ABE7.10相比,在NGG原型間隔子相鄰基序(PAM)位置,ABE8在原型間隔位A5-A7處的編輯度高約1.5倍,在位置A3-A4和A8-A10處的編輯度約高3.2倍。非NGG PAM變體的總體目標編輯效率比ABE7.10高約4.2倍。
在人類CD34+細胞中,ABE8可以在γ-珠蛋白基因HBG1和HBG2的啟動子上重建天然等位基因,效率高達60%,從而使得胎兒血紅蛋白持續存在。在原代人類T細胞中,ABE8可實現98-99%的靶標修飾,當在三個基因座上多重修飾時,該高效率仍得以維持。
作為信使RNA傳遞,ABE8在基因組DNA中不會誘導顯著水平的不依賴單個嚮導RNA(sgRNA)的脫靶腺嘌呤脫氨,而在細胞mRNA中只產生非常低水平的腺嘌呤脫氨。
據了解,基礎的腺嘌呤鹼基編輯器(例如,ABE7.10)能夠編輯A•T到G•C的點突變,但在修飾原代人類細胞中的基因座時,編輯效率可能很低。
附:英文原文
Title: Directed evolution of adenine base editors with increased activity and therapeutic application
Author: Nicole M. Gaudelli, Dieter K. Lam, Holly A. Rees, Noris M. Sol-Esteves, Luis A. Barrera, David A. Born, Aaron Edwards, Jason M. Gehrke, Seung-Joo Lee, Alexander J. Liquori, Ryan Murray, Michael S. Packer, Conrad Rinaldi, Ian M. Slaymaker, Jonathan Yen, Lauren E. Young, Giuseppe Ciaramella
Issue&Volume: 2020-04-13
Abstract: The foundational adenine base editors (for example, ABE7.10) enable programmable AT to GC point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34+ cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.
DOI: 10.1038/s41587-020-0491-6
Source: https://www.nature.com/articles/s41587-020-0491-6