機器學習助力光敏通道蛋白工程化設計
作者:
小柯機器人發布時間:2019/10/15 16:03:51
機器學習指導的光敏感通道蛋白工程化使微創光學遺傳學成為可能,這一成果由美國加州理工學院Frances H. Arnold和Viviana Gradinaru等研究人員合作取得。相關論文2019年10月14日在線發表於《自然—方法學》。
研究人員設計了光門控光敏感通道蛋白(ChR),其電流強度和光敏感性可實現微創神經元迴路的研究。
當前應用於哺乳動物大腦的ChR工具需要進行顱內手術,以進行轉基因遞送和植入光纜,從而產生少量組織的光依賴性激活。為了在不需要侵入性植入的情況下促進擴展的光遺傳學,研究人員的工程方法利用了大量的ChR變體文獻來訓練用於設計高性能ChR的統計模型。
通過在102個具有功能特徵的ChR有限實驗集上訓練的高斯過程模型,研究人員設計了具有高光敏性的高光電流ChR。其中的三個ChRger1–3可通過全身性轉基因遞送實現神經系統的光遺傳學激活。ChRger2無需光纖植入即可實現光誘導的神經元興奮,也就是說,該視蛋白能夠進行經顱光遺傳學。
附:英文原文
Title: Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics
Author: Claire N. Bedbrook, Kevin K. Yang, J. Elliott Robinson, Elisha D. Mackey, Viviana Gradinaru, Frances H. Arnold
Issue&Volume: 2019-10-14
Abstract:
We engineered light-gated channelrhodopsins (ChRs) whose current strength and light sensitivity enable minimally invasive neuronal circuit interrogation. Current ChR tools applied to the mammalian brain require intracranial surgery for transgene delivery and implantation of fiber-optic cables to produce light-dependent activation of a small volume of tissue. To facilitate expansive optogenetics without the need for invasive implants, our engineering approach leverages the substantial literature of ChR variants to train statistical models for the design of high-performance ChRs. With Gaussian process models trained on a limited experimental set of 102 functionally characterized ChRs, we designed high-photocurrent ChRs with high light sensitivity. Three of these, ChRger1–3, enable optogenetic activation of the nervous system via systemic transgene delivery. ChRger2 enables light-induced neuronal excitation without fiber-optic implantation; that is, this opsin enables transcranial optogenetics.
DOI: 10.1038/s41592-019-0583-8
Source: https://www.nature.com/articles/s41592-019-0583-8