帶餘數的除法綜合應用(五年級數學能力提升)

2021-01-09 好學好教育

知識要點

一、帶餘數的除法

在整數除法運算中,除了能整除的情形外,更多的是不能整除的情形。一般地,如果a是整數,b是整數(b≠0),那麼一定有另外兩個整數q和r,0≤r<b,使得a=bq+r。

當r=0時,我們稱a能被b整除。

當r≠0時,我們稱a不能被b整除,r是a除以b的餘數,q為a除以b的商。帶餘除式又可表示為:

a÷b=q……r(0≤r<b)或a=bq+r。

二、帶餘除法的性質

1.如果兩個整數a,b除以同一個自然數m(m≠0),而餘數相同,那麼a和b的差能被m整除。

2.如果除數不變,同餘的兩個被除數,擴大相同的倍數後,仍然同餘。

3.如果整數a和b除以自然數m,所得的餘數相同,那麼a和b除以m所得的餘數相同。

例題1.用一個自然數去除另一個整數,商為40,餘數是16,被除數、除數、商與餘數的和是933,求被除數和除數各是多少?

分析:被除數=除數×商+餘數,可以按「從被除數中減掉餘數後,被除數是除數的40倍了」。

解:

因為被除數=除數×商+餘數;

即被除數=除數×40+16;

由題意可知

被除數+除數=933-40-16=877

即(除數×40+16)+除數=877

除數×41=877-16

除數=861÷41=21

被除數=877-21=856

例題2.小明在計算有餘數的除法時,把被除數113錯寫成131,結果商比原來多3,但餘數恰好相同,問該題的餘數是多少?

分析:正確的被除數裡面包含了一個商與除數的積和一個餘數,由於被除數寫成了131,商比原來多3,所以131裡面除了包含同樣的一個商與除數的積和一個餘數外,還包含有3個除數,很顯然3個除數對應的數就是131與113的差18,所以除數是6,餘數是5。

解:

因為131-113=18

所以除數為18÷3=6

又因為113=6×18+5

所以該題的餘數是5。

例題3.一盒糖果,4粒4粒的數多3粒,6粒6粒的數多5粒,15粒15粒的數多14粒,如果這盒糖果在150~200粒之間,猜一猜這盒糖果有多少粒?

分析:根據題意,可設糖果的數量為x,可得:

x÷4=口……3

x÷6=口……5

x÷15=口……14

通過觀察以上三式可以發現,餘數都比除數小1。這樣我們可以考慮先借一粒糖果,如果有了這粒糖果,那麼,糖果的數量就是4、6、15的公倍數,然後再將這粒糖果減去。

解:〔4,6,15〕=60,

因為60不在150~200之間,

擴大3倍,60×3=180正好在150~200之間,

180-1=179(粒)。

答案:這盒糖果有179粒。

以上題目是帶餘數除法在解題過程中的實際應用,同學們要掌握被除數、除數、商、餘數之間的關係,並能靈活運用。今後還會為大家介紹帶餘數除法的其他應用,請持續關注。

相關焦點

  • 二年級數學下綜合卷,有餘數的除法較難理解,尖子生卻輕鬆考滿分
    有餘數的除法是二年級數學下冊的重點,也是難點,該知識點能否學得紮實,關係著後期兩位數、三位數的除法是否能夠學好。並且,有餘數的除法是每年期末考試必考的內容,它貫穿了整份試卷的題型設計,考查學生的應用和理解能力。
  • 二年級《有餘數的除法》測試卷 全班就一個滿分,老師:抓緊複習
    這學期的數學知識點相對比較重要,有餘數的除法就是其中之一,有餘數的除法是小學數學階段學習的重要內容,為以後多位數除以多位數的學習做鋪墊。今天孩子們進行了一場《有餘數的除法》的測試,結果有點一言難盡,全班滿分只有一位,兩極分化嚴重,還是五六位同學不及格,我們一起來分析一下這套試卷吧。第一題的口算是非常簡單,相當於送分題,利用乘法口訣求出商。
  • 帶餘除法(五年級奧數題及答案)
    帶餘除法   69、90和125被某個正整數N除時,餘數相同,試求N的最大值。   分析 在解答此題之前,我們先來看下面的例子:15除以2餘1,19除以2餘1,即15和19被2除餘數相同(餘數都是1)。
  • 人教版二年級《有餘數的除法》,附加題會做的小學生不到半數
    人教版二年級數學下冊第六單元綜合測試卷,單元名稱《有餘數的除法》,答題時間60分鐘,總分120分。高難度版本。在人教版二年級數學下冊中,除法,有餘數的除法,混合運算和萬以內數的認識是4個難點單元。表內除法一二的難度相對來說小一些,掌握好乘法口訣就可以。
  • 列豎式計算有餘數的除法,如何降低錯誤?
    現在二年級的小朋友已經在學列豎式計算除法,列豎式計算的時候要注意:正確書寫除號,並注意相同數位要對齊。二年級下數學有餘數的除法《列豎式計算1》列豎式計算的時候,需要考慮的就是試商的問題,試商其實就是找一個數和除數相乘,得數最接近且小於被除數。
  • 人教版四年級數學上冊第六單元-除數是兩位數的除法的知識梳理
    人教版四年級上冊數學教材人教版四年級數學上冊第六單元-除數是兩位數的除法,是這一冊的重點內容,主要分三部分來介紹:(1)口算除法和估算除法;(2)筆算除法;(3)商的變化規律及用商的變化規律簡便計算。人教版四年級上冊數學教材第六單元二、筆算除法筆算除法是通過例1至例7共7個例題說明的,包含了除數是整十數的除法、四舍和五入試商、靈活試商、商是兩位數的除法(含個位商0的情況)。
  • 對四年級數學試卷中的一道除法題的質疑
    小學四年級數學人教版第6單元《除數是兩位數的除法》學完之後,就讓孩子們進行了單元測試。一切都按照常規的流程進行著,考試、改卷、評講、訂正。在批改卷子時,發現有一道題孩子們錯的比較多。A.6,B.4,C.5這是一道常規題,商是兩位數,說明被除數的前兩位除以除數夠除,只需要判斷□2÷42商是十幾就可以了,由此推出被除數的□裡可以填4、5、6、7、8這五種情況。所以選C。這和卷子附帶的答案裡所給的答案一致。到此為止,似乎這一道題就解答完了。但是如果再看下去就發現了問題。被除數和商裡都有一個□,而這個□裡只能填一位數。
  • 「除數是一位數的除法」中精華練習——三年級下冊第二單元綜合練習
    筆算除法是三年級學生必須要掌握的知識點,以下幾種經典練習,你都掌握了嗎?快來練一練思維提升練習吧!( )×5<156 8×( )<4635.按餘數的大小將下列算式從小到大排列。
  • 小學數學~說課~《除數是兩位數的除法》
    我是小學數學組 01 號考生。 今天我說課的題目是《除數是兩位數的除法》。 下面開始我的說課。一、說教材(一)說教材的地位與作用除數是兩位數的除法,是人教版四年級上冊的學習內容,是小學生學習整數除法的最後階段,是整數除法的完成和提升階段。本課是在學生掌握了「除數是一位數的除法」基礎上進行教學的,因此本課的教學具有一定的總結性和概括性。
  • 初中數學培優 七年級下 第七講 整式的除法(多項式除法)
    中國目前初中數學教育大綱基於以下這個情況,即絕大多數人現實生活中只會用到三年級以下的數學,因此難度下降很大,屬於普遍教育。而高中數學的難度並沒有下降,因此初高中之間的銜接存在著很大的困難。我曾經遇到過本地區最好的公辦初中的一個學生,她在初中排在年級前20名(年級總共500多學生),但是進入高中後感覺非常吃力,跟不上進度。
  • 三年級數學試卷,利用有餘數除法和排列規律解決問題的專項練習
    三年級學習了有餘數的除法,利用有餘數除法來解決生活中的一些實際問題,這個對於很多學生還是有的困難的,一到這樣的題,很多學生會出現錯誤,可能是沒有找到做題的技巧。所以今天我給大家分享一些試題,針對習題給學生們做些講解。還有一部分是通過排列規律解決問題的題,把這些題都糅合在一起了。
  • 著名數學家伍鴻熙呼籲清除這個記號:帶餘除法的6個點
    帶餘除法是小學二年級下的內容。北師大版的教材是這樣介紹帶餘除法的。4根小棒搭成一個正方形。13根小棒可以搭成幾個正方形,還剩幾根小棒?北師大教材講帶餘除法教材中用下面的式子表示計算結果:教材中將上式中的「1」稱為餘數。「3」一般叫商,教材沒有介紹。
  • 孩子學習五年級上冊數學(北師大版)第一單元小數除法的那兩周!
    孩子學習五年級上冊數學(北師大版)第一單元小數除法的那兩周!1孩子學習五年級上冊數學(北師大版)第一單元小數除法的那兩周,可以用一句話予以概括:「孩子身體無比得累,像被掏空;心太累,有一種劫後餘生的錯覺。」2 孩子學習五年級上冊數學(北師大版)第一單元小數除法的那兩周,學習基本不在線(不在狀態),頻頻出錯。有史以來,第一次被學校數學老師把作業給撕了,不同的作業在兩天內被撕了兩次。
  • 小學1-6年級數學重點知識、公式匯總,老師都說太詳細了!
    4、應用題 比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力) 5、實踐活動 選擇與生活密切聯繫的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
  • 四年級下冊數學第一單元《乘、除法的意義和各部分間的關係》練習
    參考答案:四年級下冊第一單元四則運算第二課時乘、除法的意義和各部分間的關係一、填空題。1、求幾個相同加數的(和)的簡便運算,叫做(乘法)。2、已知兩個因數的(積)與其中一個因數,求另一個(因數)的運算,叫做(除法)。
  • 五年級數學求最小公倍數應用題,掌握方法其實很簡單
    五年級數學求最小公倍數應用題,掌握方法其實很簡單如圖,這是小學五年級數學《分數的意義》這單元,學生學習了求最小公倍數之後常見的一類應用題,雖然不難,但是有很多孩子還是不理解,今天我們就來看看這類題。求最小公倍數比較簡單的題型是分幾組沒有餘數,或者餘數相同的題。如一堆蘋果,3個一組剛好分完,4個一組剛好分完,5個一組剛好分完,求這堆蘋果至少多少個?很簡單直接求3、4、5的最小公倍數至少60個蘋果。再如:一堆蘋果,3個一組多2個,4個一組多2個,5個一組多2個,求這堆蘋果至少多少個?餘數相同,直接求出3、4、5的最小公倍數60,再加上2,至少62個蘋果。
  • 3道三年級除法奧數題,家長:題難,不會!
    尤其是數學學習,可以多找一些奧數題,讓孩子們做一做,培養數學思維,提高興趣,都不錯。今天逛論壇看到3道三年級除法奧數題,發帖子的家長表示有點難,能把這幾道題全部解答出來的,肯定是小學霸!一起來看看題吧:上圖是第一道奧數題。
  • 數學運算(三)——無符號數除法器
    數學運算(一)—— 無符號數加法器數學運算(二)——無符號數乘法器結構數學運算(三)——無符號數除法器
  • 如何學好三年級數學—乘除法篇
    三年級下學期的數學筆算除法和乘法,課時已經基本學習完畢。筆算乘除法的重要性,在加減運算後,是整個小學數學的又一重要基礎,如果不能完全準確掌握,搭建數學大廈將不切實際。現對這一階段學習做一些方法總結,和家長孩子們共同提高這部分學習成績。
  • 四年級下冊《乘、除法的意義和各部分之間的關係》綜合練習附答案
    2、已知兩個因數的積與其中一個因數,求(另一個因數)的運算,叫做(除法);在除法中,已知的積叫做(被除數),其中已知的一個因數叫做(除數),所求的另一個因數叫做(商)。除法是乘法的(逆運算)。3、積=(因數)×(因數) 因數=(積)÷(另一個因數)4、商=(被除數)÷(除數) 除數=(被除數)÷(商)被除數=(除數)×(商) 被除數=(除數)×(商)+(餘數)(被除數-餘數)÷(商)=除數 (被除數-餘數)÷(除數)=商5、(0)除以一個非(0)的數,還得(0),(0)不能作為除數。