赫羅圖-詮釋恆星的演變

2021-01-19 宇宙解碼

    赫羅圖是恆星的光譜類型與光度之關係圖,赫羅圖的縱軸是光度與絕對星等,而橫軸則是光譜類型及恆星的表面溫度,從左向右遞減。恆星的光譜型通常可大致分為 O.B.A.F.G.K.M 七種。




    赫羅圖的橫坐標有時用恆星的表面溫度表示,有時也用恆星的光譜型表示,因為光譜型和表面溫度之間存在著對應的關係。恆星是一團熾熱的氣體,是一團被自身引力束縛的氣體,它們的中心區域密度和溫度都特別高,足以產生熱核反應。恆星表面的高溫使之發射類似黑體輻射一樣的光譜。在很寬的頻率範圍內都有輻射,因此稱為連續譜。光譜曲線的峰值和形狀由物體的溫度決定。不同頻率的光,其顏色不同。恆星的顏色多種多樣,從恆星的顏色就可以判斷出它們的溫度。


    溫度用絕對溫度K表示,絕對溫度與攝氏溫度的換算關係是0°C=273K。表面溫度在絕對溫度30000K以上的恆星發藍光,溫度在10000~30000K的恆星顏色藍白,溫度在7500~10000K的恆星顏色純白,6000~7500K的恆星呈黃白色,溫度在5000~6000K時,恆星的顏色發黃,溫度在3500~5000K時恆星的顏色為紅橙,溫度在2000~3500K的恆星顏色發紅。



    恆星的光譜除了連續譜以外,還有兩種線狀譜,分別是發射線和吸收線。它們是疊加在連續譜上的亮線和暗線。熾熱到一定程度的稀薄氣體原子會發射特定頻率的光子,形成發射線;而較冷的稀薄氣體的原子則可能吸收通過它的連續光譜中的特定頻率的光子而形成暗的吸收線。不同的物質會有不同的吸收線或發射線。測量這些譜線,可以得到恆星的化學成分的信息。


    從地球實驗室的光譜實驗中得知,氫、氧、碳等輕元素的光譜線主要在紫外,肉眼看不見,只有幾條譜線在可見光區。較重的元素的譜線大部分在可見光區。恆星的外層,如太陽的光球,其溫度遠比內層低,因此其中的物質就會對內部來的連續譜輻射進行選擇吸收,而形成許多暗黑的吸收線。在恆星表面大氣中的某些元素的原子產生發射線要求溫度相當高,一般不容易達到,因此有發射線的恆星比較少。有吸收線的恆星則很普遍,只不過有的多些有的少些。也有一些恆星光譜呈現有分子帶譜線。



  

    天文學家根據恆星的吸收線光譜特徵來進行分類。最著名的分類法由哈佛大學天文臺的天文學家提出的,稱為哈佛分類法。他們根據240000顆恆星的吸收光譜資料,把它們分為七大類:O型、B型、A型、F型、G型、K型和M型,在G型和K型中,又有三個子型,即R型、N型和S型。O型為藍星;B型為藍白星;A型為白星;F型為黃白星;G型為黃星;K型為橙紅星;M型為紅星。這種光譜型分類的順序恰好是恆星表面溫度從高到低的序列。對應的表面溫度為O型為40000-25000K;B型為25000-12000K;A型為11500-7700K;F型為7600-6100K;G型為6000-5000K;K型為4900-3700K;M型為3600-2600K。天文學家曾認為,這 一序列代表了恆星的從高溫到低溫的演化,把O型和B型稱之為早型星,把K型和M型稱為晚型星。後來知道,這個看法並不正確。


    從赫羅圖上可以看出,恆星主要集中在四個區域。第一個區域為主星序區:銀河系中90%以上的恆星都分布在從左上到右下的這一條帶子上。這個帶上的恆星,有效溫度愈高的,光度就愈大。這些星被稱為主序星,又稱矮星。第二個區域在主星序右上方:這些恆星的溫度和某些主序星的一樣,但光度卻高得多,因此稱之為巨星或超巨星。


    第三個區域在主星序左下方:是一些溫度高而光度低白矮星,以及其它低光度恆星,第四個區域位於赫羅圖上一個很右的位置:溫度非常冰冷的星際雲在最右邊,當星際雲收縮,它會變得越來越熱,在赫羅圖上的位置亦會向左移動。由星際雲形成的原恆星也在赫羅圖的右邊。赫羅圖是由恆星的光學觀測數據構成的,因此中子星和黑洞不能在赫羅圖上顯現。在赫茨普龍和羅素最初給出的赫羅圖中,沒有第三和第四個區域,因為那時還沒有發現白矮星,也沒有討論恆星的形成。



    

    赫羅圖在恆星演化的研究當中十分重要。由於恆星內部能源的不斷消耗,恆星要發生演變,光度和溫度都要發生變化,這導致在赫羅圖上的位置發生變化。天文學家根據赫羅圖描繪了恆星從誕生、成長到衰亡的演化路徑,並從理論上給出恆星從誕生到主序星、紅巨星、變星、新星、超新星、緻密星的演化機制和模型。


    從赫羅圖上可以看出,恆星主要集中在四個區域。第一個區域為主星序區:銀河系中90%以上的恆星都分布在從左上到右下的這一條帶子上。這個帶上的恆星,有效溫度愈高的,光度就愈大。這些星被稱為主序星,又稱矮星。第二個區域在主星序右上方:這些恆星的溫度和某些主序星的一樣,但光度卻高得多,因此稱之為巨星或超巨星。第三個區域在主星序左下方:是一些溫度高而光度低白矮星,以及其它低光度恆星,第四個區域位於赫羅圖上一個很右的位置:溫度非常冰冷的星際雲在最右邊,當星際雲收縮,它會變得越來越熱,在赫羅圖上的位置亦會向左移動。由星際雲形成的原恆星也在赫羅圖的右邊。赫羅圖是由恆星的光學觀測數據構成的,因此中子星和黑洞不能在赫羅圖上顯現。在赫茨普龍和羅素最初給出的赫羅圖中,沒有第三和第四個區域,因為那時還沒有發現白矮星,也沒有討論恆星的形成。



    赫羅圖在恆星演化的研究當中十分重要。由於恆星內部能源的不斷消耗,恆星要發生演變,光度和溫度都要發生變化,這導致在赫羅圖上的位置發生變化。天文學家根據赫羅圖描繪了恆星從誕生、成長到衰亡的演化路徑,並從理論上給出恆星從誕生到主序星、紅巨星、變星、新星、超新星、緻密星的演化機制和模型。


    赫羅圖可顯示恆星的演化過程,大約90%的恆星位於赫羅圖左上角至右下角的帶狀上,這條線稱為主序帶。位於主序帶上的恆星稱為主序星。形成恆星的分子雲是位於圖中極右的區域,但隨著分子雲開始收縮,其溫度開始上升,會慢慢移向主序帶。恆星臨終時會離開主序帶,恆星會往右上方移動,這裡是紅巨星及紅超巨星的區域,都是表面溫度低而光度高的恆星。經過紅巨星但未發生超新星爆炸的恆星會越過主序帶移向左下方,這裡是表面溫度高而光度低的區域,是白矮星的所在區域,接著會因為能量的損失,漸漸變暗成為黑矮星。




    物理學家在研究熱輻射光譜的時候,發現了在一個單位面積上,亮度與溫度之間的關係。溫度越高亮度越亮。因此,一旦我們能夠決定一個星球的絕對星等和光譜類型,我們就能估計它的體積大小。單位時間內,在單位面積中所釋放出來的熱輻射能量與溫度四次方成正比。亮度為單位時間內熱輻射所發出來的能量,所以將上式乘上星球總面積,假設星球為球形:所以在赫羅圖上,也可以把相同表面積的星球,出現的位置用連線標示出來。我們可以看到,在圖的右上方,低溫且高亮度,所以是體積很大的星球。越往左下方高溫且低亮度,所以體積越來越小。


    由於一個星團中的恆星距離基本一致(或者一個遙遠星系中的星團距離基本一致),因此可以用視星等取代絕對星等作為縱軸繪製星團中成員恆星的赫羅圖或者遙遠星系中成員恆星的赫羅圖。星團赫羅圖與標準赫羅圖的比較,可以幫助估計星團的實際距離。

相關焦點

  • 細說恆星的一生——從赫羅圖上尋跡恆星的身世
    大家好,歡迎來到小五說科技,世界好大奇妙的事情每一天都有,就讓我們一起去發現,我們今天就來聊一聊赫羅圖,小五覺得單記名詞不重要,最重要的還是要告訴大家它背後的理論到底是什麼,想要弄清楚赫羅圖,就要理順這幾個概念。
  • 「赫羅圖」不僅反映了不同類型恆星的分布特徵也反映了恆星的演化
    「赫羅圖」反映了恆星在溫度和光度圖上並不是隨機分布的,恆星是遵循一定的規律的,天文學家就把這種規律統稱為「赫羅圖」,赫羅圖在恆星的演化的研究中有著舉足輕重的地位,是研究恆星最重要的一張圖,因為它不僅僅反映了不同類型恆星的分布特徵,也反映了恆星的演化。
  • 揭示恆星一生經歷的秘密——赫羅圖
    對宇宙的觀測包括以下七個方面:1、宇宙微波背景輻射 2、膨脹 3、均勻性和各向同性 4、宇宙的年齡 5、輕元素豐度 6、物質密度,宇宙中的暗物質和暗能量 7、宇宙的大尺度結構赫羅圖:把恆星的光度與溫度作出比較是很有意思的。由於恆星的光度依賴於它的溫度和大小,故把它們的光度和溫度作圖比較就能把恆星按體積大小區分開來。
  • 【E.N.科普專欄】赫羅圖——濃縮恆星的一生
    =)看到這裡你或許會發現,恆星的光譜和彩虹的顏色好像呀~有赤橙黃……咦?綠色哪裡去了!怎麼沒有綠色的恆星呢?用一張圖囊括了恆星們的各種數據:橫軸代表光譜型或表面溫度,縱軸代表絕對星等,也就是它們真實的亮度。而這張圖也以二人名字組合命名,叫做「赫羅圖」。
  • 赫羅圖
    (顏色)相同的恆星,單位面積的輻射量也相同,但因恆星的大小,也就是表面積不同,總輻射量(也就是光度或絕對星等[1])也會不同。這就是傳說中的赫羅圖。赫羅圖  圖:百度圖片可以看見,絕大多數恆星都分布在從左上到右下的一塊帶狀區域。這意味著它們的光度強烈依賴於溫度[2],溫度越高,光度越強。看來它們是比較「正常」的恆星。
  • 讓我點亮你的世界——太陽、恆星的分類及赫羅圖
    本期我們將拜訪我們這位偉大的光明使者,並逐漸過渡到對恆星分類的探討,最後了解赫羅圖,為下一期做好知識儲備。在開始之前,先給大家出一道謎語:誰永遠不會長大?(打一天文現象)(提示:謎底在文中出現。)謎底在文末。
  • 赫羅圖的誕生
    20世紀的天文學有一個非凡的成就,這便是將恆星分類的赫羅圖,全稱「赫茨普龍-羅素圖」,那麼赫羅圖是如何誕生的呢?它又傳達給我們怎樣的信息呢?這可能就是接下來兩天我要水的內容了。在1878年去世以前,西奇已經對4000餘顆恆星進行了光譜分類,其中包括北半球肉眼可見的大多數恆星,為赫羅圖後來的誕生打下了堅實的基礎。
  • 赫羅圖,研究宇宙的「百科全書」,通過這幅圖帶你探索恆星的奧妙
    如果想搞清楚這些大大小小的恆星,最好的方法就是畫一幅圖。這幅圖就是「赫羅圖」,它堪稱是科學家究宇宙的「百科全書」,小編今天就會通過這幅圖帶你探索和了解一下恆星的奧妙!赫羅圖赫羅圖是天文學中最著名的一幅圖,它的名字來自於天文學家埃希納·赫茨普龍和亨利·諾利斯·羅素,兩人在1911年分別繪製了這張圖。
  • 主序星到底是什麼 主序星指的是赫羅圖上的恆星
    主序星就是一種分類,指的是在赫羅圖上的恆星,主序星可以看到恆星之間的進化關係,可以看到進化的過程,主序帶就是通過顏色而分辨不同的恆星帶,在主序帶的恆星也就是主序星,主序星就是人命名之後的主序帶。,也有了更多恆星的資料,對恆星還進行了分類,哈佛大學的教授還用哈佛分類法來進行分類,到了1901年把成果發表到了報紙上。
  • 赫羅圖:恆星的一生
    HR圖不僅可以告訴我們恆星的相關信息,還揭示了恆星的演化規律;隨著恆星的演變,其光度與溫度發生變化,在HR圖上的位置也隨之改變。最初形成恆星的分子雲,冷寂而黯淡,位於圖像的極右區。隨著分子雲的坍縮,其體積減小,溫度上升,成為原恆星;直至原恆星的內部溫度達到熱核聚變發生的條件,有了足以維繫生命的能量來源——一顆恆星就這樣誕生了。
  • ggplot2 案例:赫羅圖
    今天的推文是個 ggplot2 案例,不過也是一個動態圖表,在開始敲今天的代碼之前我們先了解一下什麼是「赫羅圖」?赫羅圖(Hertzsprung-Russell diagram,簡寫為 H-R diagram 或 HRD)是丹麥天文學家赫茨普龍及由美國天文學家羅素分別於 1911 年和 1913 年各自獨立提出的。
  • 鋪墊部分——赫羅圖
    (來源百度百科)上面這個圖就是赫羅圖了。之所以我要從赫羅圖講起,是因為這張圖表示了恆星的光譜與溫度的聯繫。圖中橫坐標表示恆星的光譜型,因恆星的光譜型與表面溫度有關, 因此橫坐標也就表示恆星的表面溫度;縱坐標表示恆星的絕對星等,因絕對星等是光度的一種量度,因此縱坐標也表示恆星的光度。因為恆星發光發熱的原理是熱核反應,所以恆星表面的高溫使恆星發射類似黑體輻射的光譜。這種光譜的曲線由恆星的溫度決定。
  • 恆星相關知識問答-認識恆星
    恆星是一種什麼樣的天體?恆星是由熾熱氣體組成、能自己發光的天體。恆星誕生於以氫為主,並且有氦和微量其他重元素的雲氣坍縮。太陽是離地球最近的恆星,也是地球能量的來源。白天由於有太陽照耀,無法看到其他的恆星;只有在夜晚,才能在天空中看見其他的恆星。
  • 主星序與主序星區別與思考,赫羅圖是否是混沌坐標系呢?
    主星序與主序星的區別以恆星光度為縱軸,越亮的恆星越在圖中的上端。以恆星表面溫度和光譜為橫軸,恆星溫度越高,就越靠近左側。這就是著名的赫羅圖。從圖中可以看出,大部分的恆星,從藍超巨星到紅矮星,都集中在一條對角線條帶上。這就是主星序。 90%的恆星一生都會在主星序上度過。位列主星序上的恆星被稱為主序星。太陽就是主序星。
  • 人類源流——恆星演化1
    在質量略大於太陽質量的恆星,碳氮氧循環在能量的產生上貢獻了可觀的數量。核融合的開始會導致流體靜力平衡短暫的失去,這是核心向外的「輻射壓」和恆星質量引起的「重力壓」之間的平衡,以防止恆星進一步的「重力塌縮」,但恆星迅速的演變至穩定狀態。新誕生的恆星有各種不同的大小和顏色。光譜類型的範圍從高熱的藍色到低溫的紅色,質量則從最低的0.085太陽質量到超過20倍的太陽質量。
  • 褐矮星被稱為「失敗的恆星」,質量介於恆星和行星之間的一種存在
    赫羅圖是由丹麥天文學家赫茨普龍和美國天文學家羅素,在1911年和1913年各自獨立提出的,這張圖研究恆星演化的重要工具。赫羅圖是反映恆星的光譜類型與光度之間的關係圖,其縱坐標是光度與絕對星等,而橫坐標是光譜類型和恆星表面溫度。
  • 窮極一生光熱,存於宇宙之間:恆星死亡前是否留有遺憾?
    (氫氣)層,此過程會使恆星溫度升高,因為氫氣仍然在與恆星的氦殼融合。離地球最近的恆星是太陽。在地球的夜晚,許多其它的恆星也是肉眼可見的,因為它們距離地球非常遠,所以只作為大量固定的亮點出現在夜空中。歷史上,最有名的一些恆星被分成一組組星座與星群,每組中最亮的恆星被賦予正規名稱。天文學家們把恆星一覽表匯總到一起,通過這些信息識別出已知的恆星,並提供標準化星體設計。
  • 窮極一生光熱,存於宇宙之間:恆星死亡前是否留有遺憾?
    一顆恆星就是一個由等離子體通過自身引力匯聚到一起形成的發光球體所組成的天體。離地球最近的恆星是太陽。在地球的夜晚,許多其它的恆星也是肉眼可見的,因為它們距離地球非常遠,所以只作為大量固定的亮點出現在夜空中。歷史上,最有名的一些恆星被分成一組組星座與星群,每組中最亮的恆星被賦予正規名稱。
  • 根據顏色可以辨別恆星?顏色的冷暖,決定了恆星表面溫度的高低!
    五顆地外大行星「衝」的詳細數據恆星的顏色對於恆星的觀測,除了正常的辨識星座之外,也可以留意不同恆星之間的顏色差異。古時候人們就已經留意到不同的恆星是有不同顏色的。《荊州佔》中有說:辰星色比織女大星,為正色;青比左角,赤比參右肩,黑比亢,此辰星之常色也。
  • 古代恆星的軌道講述了銀河系的演變
    研究銀河系恆星軌道與顯示金屬含量低, 他們中的一些不動,因為, 作為理論預測。這些古老的恆星將為我們銀河系的演化提供新的見解。據認為,一些最初的恆星應該主要位於銀河系的中心。但是天文學家也在銀河系盤中發現了它們。