數值代數與科學計算國際會議

2021-02-21 國家天元數學西北中心
國家天元數學西北中心「數值代數與科學計算國際會議」定於2019年6月8日至6月9日西安召開。本次會議旨在為從事計算數學、數值代數及相關研究的專家學者搭建學科發展和合作的交流平臺,藉助學術報告等形式,探討計算數學理論、方法及應用方面的發展、以及與其他工程和科學領域的交叉、融合與創新,推進數學學科發展建設。

學術委員會:

主席:江松(北京應用物理與計算數學研究所)

委員(按姓氏拼音順序):

白中治(中國科學院)

韓渭敏(愛荷華大學)

何曉明(密蘇裡科技大學)

何銀年(西安交通大學)

侯延仁(西安交通大學)

黃艾香(西安交通大學)

李開泰(西安交通大學)

林濤(維吉尼亞理工大學)                           

梅立泉(西安交通大學)

聶玉峰(西北工業大學)

溫瑞萍(太原師範學院)

伍渝江(蘭州大學)     


Session 1


地點:西北大學賓館1100會議室

Session 2

地點:西安交通大學數學樓2-1會議室


Session 3


地點:西北大學非線性科學研究中心學術報告廳

Banded M-splitting Iteration Methods for Spatial Fractional Diffusion Equations

白中治

(中國科學院)

For solving time-dependent one-dimensional spatial-fractional diffusion equations of variable coefficients, we establish a banded M-splitting iteration method applicable to compute approximate solutions for the corresponding discrete linear systems resulting from certain finite difference schemes at every temporal level, and demonstrate its asymptotic convergence without imposing any extra condition. Also, we provide a multistep variant for the banded M-splitting iteration method, and prove that the computed solutions of the discrete linear systems by employing this iteration method converge to the exact solutions of the spatial fractional diffusion equations. Numerical experiments show the accuracy and efficiency of the multistep banded M-splitting iteration method.

Numerical Analysis of Hemivariational Inequalities Arising in Mechanics

韓渭敏

(愛荷華大學)

Inequality problems in mechanics can be divided into two main categories: that of variational inequalities which is concerned with nonsmooth and convex functionals (potentials), and that of hemivariational inequalities which is concerned with nonsmooth and nonconvex functionals (superpotentials).  While variational inequalities have been studied extensively, the study of hemivariational inequalities is more recent.  Through the formulation of hemivariational inequalities, problems involving nonmonotone, nonsmooth and multivalued constitutive laws, forces, and boundary conditions can be treated successfully. In the recent years, substantial progress has been made on numerical analysis of hemivariational inequalities.  In this talk, a summarizing account will be given on recent and new results on the numerical solution of hemivariational inequalities with applications in contact mechanics.

A non-iterative multi-physics domain decomposition method for coupled free flow and porous media flow problem

何曉明

(密蘇裡科技大學)

The Stokes-Darcy and Navier-Stokes-Darcy model have attracted significant attention in the past ten years since they arise in many applications involving with coupled free flow and porous media flow such as surface water flows, groundwater flows in karst aquifers, petroleum extraction and industrial filtration. They have higher fidelity than either the Darcy or Navier-Stokes systems on their own, but coupling the two constituent models leads to a very complex system. This presentation discusses a series of works for the non-iterative multi-physics domain decomposition method to solve this type of problems, including both the algorithm development and analysis. The key ideas are to (1) decouple the free flow and porous media flow through Robin type boundary conditions which directly arise from a direct re-organization of the three interface conditions; (2) use the information from the previous time steps to directly predict the interface information for the current step without an iteration for domain decomposition. Related Ritz projections are analyzed. Optimal convergence is proved for the finite element solution with the k-step back backward differentiation scheme in temporal discretization (k less than or equal to 5). Numerical results are presented to illustrate the features of the proposed method.

Decoupled Finite Element Methods for the 3D Primitive Equations of Ocean

何銀年

(西安交通大學)

In this paper, two decoupled finite element methods are proposed for solving the 3D primitive equations of ocean. Based on the finite element approximation, optimal error estimates are given under the convergence condition. And the detailed algorithms are given in the section of numerical tests.  Further, numerical calculations are implemented to validate the theoretical analysis and more calculations are implemented for a more meaningful problem. For both theoretical and numerical points of view, the proposed decoupled finite element methods are the effective strategies to solve the 3D primitive equations of ocean.

Time Filter for the Unsteady Coupled Stokes/Darcy Model

侯延仁

(西安交通大學)

In this talk, we apply the time filter technique for increasing the accuracy of the fully discrete backward Euler scheme for the unsteady Stokes/Darcy model. Roughly speaking, by adding a single line of code to the backward Euler scheme, we can improve the first order scheme into a second order scheme. The stability and the error estimations for the proposed scheme are obtained. The analysis results show that the scheme is unconditional stable and second order accurate in time in L^2 norm case while it is still a first order scheme in H^1 norm sense. Finally, a simple numerical experiment is carried out to verify the analysis results.

A Dimension Splitting Method for the 3D-PDEs

黃艾香

(西安交通大學)

As well known that there exist a lot of difficulties in numerical computation for the 3D PDEs, in particular for the 3D Navier-Stokes, such as nonlinearity; incompressible constraint condition; complex boundary geometry; boundary layer. In order to overcome the last two difficulties, we proposed a 「Dimension Splitting Method」, which is to split the three dimensional complex flow problem into a series of two dimensional subproblems, then obtain a nonlinear system with N 2D subproblem to approximate the original 3D problem. Our method is different from the classical domian decompostion method, we only solve a 2D sub-problem in each sub-domian without solving 3D sub-problem.

Weighted Nuclear Norm Minimization Based Regularization Method for Image Restoration

黃玉梅

(蘭州大學)

Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem. Different assumptions or priors on images are applied in the construction of image regularization methods. In recent years, low-rank matrix approximation has been successfully introduced in image denoising and significant denoising effects have been achieved. The computation of low-rank matrix minimization is a NP hard problem and it is often replaced with   the matrix's weighted nuclear norm minimization.  Nonlocal image denoising methods assume that an image contains an extensive amount of self-similarity. Based on such assumption, in this talk, we develop a   model for image restoration by using   weighted nuclear norm to be the regularization term. An alternating iterative algorithm is designed to solve the proposed model and we also present the convergence analyses of the algorithm. Numerical experiments show that the proposed method can recover the images much better than the existing regularization methods in terms of both recovered quantities and visual qualities.

血管裡的血液流動和血管壁的彈性殼體的耦合系統的球單元有限元逼近

李開泰

(西安交通大學)

血管裡的血液流動和血管壁的彈性殼體的耦合系統的球單元有限元逼近,血管壁視為三維彈性殼體,服從三維彈性方程,血液流動視為不可壓縮的牛頓流體,服從Navier_stokes方程,連接邊界服從速度和法向應力連續條件。應用有限元方法求解,有限元單元為三維球單元。血管壁作為彈性殼體,在厚度方向只用一個球單元,在血液流內,元素的幾何都是三維球,但幾何尺寸

是不均勻的。尚未進行數值分析。

自由流和裂縫多孔介質流區域耦合問題建模及其間斷Galerkin有限元方法

李瑞

(陝西師範大學)

自由流和多孔介質流耦合問題在工程中有著重要的應用,例如地表水和地下水的交互、地下水在喀斯特巖溶含水層的流動、血液在血管和器官之間的流動、工業過濾、汙染物的運移、石油開採、地熱能的研究、二氧化碳的封存、海綿城市的建設等。而在實際多孔介質區域, 地質結構複雜多變, 基質中通常含有裂縫。裂縫的幾何區域狹長, 分布具有隨機性, 大小跨越多個數量級, 且填充嚴重, 既可作為高導流通道, 也可成為流動屏障. 自由流和裂縫多孔介質區域耦合問題流體流動通道尺度差異大,多種流動形式共存,不僅存在滲流,還存在自由流,以及三個區域之間的流體交換,同時,裂縫的存在加劇了孔隙介質的非均勻性,各向異性和不連續性,從而導致基質中流體的速度和壓力不連續。本文針對不可壓縮單相流體在自由流區域和裂縫多孔介質區域中的耦合流動問題,結合數學建模、理論分析和數值模擬展開研究。我們擬利用區域耦合的建模框架結合數學上的理論推導,建立描述自由流和裂縫多孔介質流區域耦合問題的可計算數學模型。為了準確模擬自由流和裂縫多孔介質流區域耦合問題的流體流動,一方面要求數值方法可以精準捕捉間斷解;另一方面由於此耦合系統是一個多區域耦合的界面問題,要求數值方法易於處理在界面處網格剖分不匹配的情形。基於以上兩個方面的考慮,我們選用具有精確捕捉間斷解、允許懸掛點、高精度、允許任意多邊形網格剖分、局部質量守恆等性質的間斷Galerkin有限元方法求解此耦合問題。

Immersed finite Element Methods: Development, Analysis, and Applications

林濤

(維吉尼亞理工大學)

This presentation is a brief introduction to the development, analysis, and applications of immersed finite-element (IFE) methods for solving interface problems of partial differential equations with interface-independent meshes. An IFE method uses standard polynomial finite element functions on non-interface elements, but it employs macro polynomials designed according to interface jump conditions on interface elements. We will describe a unified framework for constructing a group of IFE spaces based on lower degree polynomials such as linear, or bilinear, or rotated-Q1 polynomials. We will discuss the approximation capability of these IFE spaces. A partially penalized IFE (PPIFE) scheme will presented for solving the typical elliptic interface problems. Then, we will consider some applications of this PPIFE discretization to time dependent interface problems and some inverse problems.

梅立泉

(西安交通大學)

宇宙中超過99%的重子物質由等離子體組成,等離子體物理在空間科學研究和空間工程應用中具有非常重要的地位。非線性色散方程廣泛應用於從流體動力學、等離子體物理到非線性光學的物理科學,在化學和生物等學科中也有廣泛的應用。

本文主要針對等離子體中的三類非線性波動現象:孤立波、激波、怪波,研究等離子體物理中非線性色散方程的有限元數值解法。首先,對於RLW方程,當使用標準Crank-Nicolson公式進行時間離散時,在每一個時間層上需要求解一個非線性常微分方程組,而這個方程組需要用迭代法進行數值求解。首先,對高維RLW和SRLW方程,研究其求解的有限元數值格式,對格式進行數值分析並對孤立波的傳播、兩個孤立波的碰撞進行了模擬。

其次,對(2+1)-維Schrӧdinger方程,建立其求解的顯式多步有限元求解格式,並對孤立波的傳播及Bose-Einstwein凝聚進行模擬。

然後,對分數階Schrӧdinger方程,建立其求解的二階的能量穩定的數值格式,對格式進行數值分析,並通過算例模擬等離子體物理中的反常擴散現象。

Numerical analysis of the stabilized characteristic mixed IPDG method for the incompressible Navier-Stokes equations

王淑琴

(西北工業大學)

Here a stabilized second order characteristic mixed interior penalty discontinuous Galerkin (IPDG) method is introduced for the incompressible Navier-Stokes equations in $\mathbb{R}^2$. It is shown that the numerical approximation of velocity is bounded in $W^{1,\infty}$-norm when the time step satisfies $\tau\leq Ch$ where $C$ is a constant. With the boundedness, the optimal error estimates of velocity in $L^2$-norm and in DG norm $|||\cdot|||_{1,h}$ are established by using Stokes projection method. In addition, the suboptimal error estimates of pressure in $L^2$-norm is proven. Some numerical experiments are given to validate the theoretical results.

Numerical methods for solving linear complementarity problems

汪祥

(南昌大學)

In this talk, we will introduce two numerical  methods to solve a class of linear complementarity problems. Convergence analysis will show these two new methods will converge under certain conditions. Numerical experiments further show that the proposed methods are superior to the existing methods in actual implementation.

溫瑞萍

(太原師範學院)

矩陣重建問題主要衍生於近幾年非常流行的壓縮感知技術, 主要分為矩陣填充和矩陣恢復問題, 在圖像與信號處理、計算機視覺、推薦系統等方面發揮著重要的作用.

Toeplitz矩陣作為一種特殊的矩陣, 在圖像與信號處理中有著廣泛的應用, 其奇異值分解的算法複雜度僅為O(n^2logn), 目前大部分的矩陣重構算法都是基於奇異值分解的. 而在解決Toeplitz矩陣的矩陣重構問題時, 現有的算法存在計算量大、速度慢等問題. 這裡主要報告以下兩方面工作:

針對Toeplitz矩陣填充問題, 首先提出了Toeplitz矩陣的保結構算法, 該算法中利用二次規劃技術及均值技術尋找最優填充矩陣並保持Toeplitz結構, 從而利用其結構特點降低奇異值分解時間. 之後又提出了Toeplitz矩陣的奇異值閾值算法和修正的增廣Lagrange算法. 理論上證明了算法的收斂性. 數值實驗表明新算法的高效性.

針對Toeplitz矩陣恢復問題, 提出了Toeplitz矩陣恢復的閾值算法, 算法分別利用均值和中值使得迭代矩陣保持Toeplitz矩陣結構, 同時利用其快速奇異值分解算法降低奇異值分解及CPU時間. 隨後提出了增廣Lagrange算法. 與原算法對比, 當數據或圖像汙染很嚴重時, 新的算法更有效.

Randomized GLRAM-type algorithms for high dimensionality reduction and image reconstruction

吳鋼

(中國礦業大學)

High-dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) and its variations are popular for dimensionality reduction and image reconstruction, which are based on native two-dimensional matrix patterns. However, they often suffer from heavily computational overhead in practice, especially for data with high dimensionality. In order to reduce the computational complexities of these type of algorithms, we apply randomized singular value decomposition (RSVD) on them and propose three randomized GLRAM-type algorithms. Theoretical results are established to show the validity and rationality of our proposed algorithms.

First, we discuss the decaying property of singular values of the matrices during iterations of the GLRAM algorithm, and provide the target rank required in the RSVD process from a theoretical point of view. Second, we show the relationships between the reconstruction errors generated by the original GLRAM-type algorithms and the randomized GLRAM-type algorithms. Third, we shed light on the convergence of the randomized GLRAM algorithm.

Numerical experiments on some real-world data sets illustrate the superiority of our proposed algorithms over their original counterparts and some state-of-the-art algorithms, for image reconstruction and face recognition.

Minimum residual HSS iteration method for non-Hermitian positive definite complex linear systems

伍渝江

(蘭州大學)

This talk will present a non-stationary iteration method, or a minimum residual Hermitian and skew-Hermitian (MRHSS) iteration method for solving non-Hermitian positive definite complex linear systems. Convergence analysis and numerical results will be also given to illustrate the efficiency of the MRHSS method.

Analysis of symmetric schemes and robust preconditioners for incompressible MHD system

張國棟

(煙臺大學)

In this talk, we consider efficient schemes for solving incompressible MHD (magnetohydrodynamics) system and design robust preconditioners for them. We propose the first order and second order symmetric schemes with augmented symmetric terms in magnetic equations that are introduced in consideration of designing uniformly robust preconditioners. We also carry out the optimal error estimates of the proposed scheme. Furthermore, we design diagonal block preconditioners for the schemes, and rigorously prove that the condition number of preconditioned system is uniformly bounded by a constant that only depends on the computational domain. Finally, some numerical experiments, including accuracy tests and physical benchmark problems, are presented to verify the uniform robustness of the preconditioner and test the convergence orders of the schemes.


國家天元數學西北中心

國家天元數學西北中心是國家自然科學基金委員會天元數學基金為推動中國數學率先趕上世界先進水平、推動中國數學區域、領域均衡發展而設立的數學研究機構(平臺)。中心依託交大、立足西北、面向全國、放眼世界,將建設成為數學工作者與其它學科領域學者深度交叉融合的學術交流中心和數學與數學技術研究中心。

相關焦點

  • 朱平——江南大學——代數理論、理論計算機科學、生物計算等
    朱平       性別: 女       出生年月: 1962-09 所在院校: 江南大學       所在院系: 理學院 職稱: 教授       招生專業: 計算數學
  • 首次國際計算物理會議實現檔案考
    作者 |鄭悅萍第一屆國際計算物理會議(ICCP)的召開,無疑是九所對外交流的開創性事件。至今,ICCP成為了計算物理領域一直延續、具有國際影響力的系列會議。「當時我們在南寧開核物理會議,我問他想不想搞一個這樣的關於計算物理方面的國際會議,他當時表示有興趣。」張天元先生在接受採集小組訪談時回憶。就這樣,一次相遇萌發了兩位科學家策劃、籌備ICCP會議的想法。計算物理方面的國際會議,最早是由英國原子能署和物理研究所與物理學會的計算物理組於1969年7月28日在英國Culham Lab 聯合召開的會議。
  • 計算機代數淺談
    截至20世紀80年代, 提到計算機和應用數學的結合,對於大多數人來說想到的都是數值計算. 數值計算是研究實數演算的學科,更確切地說, 數值計算是尋找適當的有理數去逼近實際問題的實數解.這類問題往往通過代數、微分、積分或者其他類型的方程以及適當的初、邊值條件來表達.因為計算機還不能準確地表達實數,所以通過數值計算得到的結果是近似的.
  • 寧波諾丁漢大學成功舉辦2020傳熱傳質數值方法國際學術會議
    由中國工程熱物理學會傳熱傳質分會青年工作委員會、寧波諾丁漢大學、寧波市能源材料與技術重點實驗室、寧波市低碳汽車熱管理前沿技術創新團隊聯合舉辦的2020傳熱傳質數值方法國際學術會議(ISNMHMT2020)於2020年12月11-13號在寧波諾丁漢大學成功舉辦。
  • 「2016理論與高性能計算化學國際會議」舉行
    (COSCAR)計算化學虛擬實驗室(VLCC)主辦的「2016理論與高性能計算化學國際會議」(International Conference on Theoretical and High Performance Computational Chemistry 2016, ICT-HPCC16)在重慶召開。
  • 2018年理論與高性能計算化學國際會議通知
    中國科學院計算科學應用研究中心(Center of Scientific Computing Applications & Research, Chinese Academy of Sciences,簡稱COSCAR)為研究型的非法人研究單元,依託於中國科學院計算機網絡信息中心,由中國科學院院屬相關研究所共建,具有非營利和相對獨立的性質,是高性能計算科學應用軟體研發的基礎性
  • 最優化理論與應用國際會議在湘大舉辦
    會議現場。 合影留念。湖南日報·新湖南客戶端12月31日訊(通訊員 楊 柳)12月27日至30日,2019年最優化理論與應用國際會議在湘大召開,來自國內外30多所知名高校、科研院所的70餘名專家和學者與會,共同研討最優化領域的最新進展及其應用。 開幕式由美國加州大學聖地牙哥分校聶家旺教授主持。
  • 第三屆反演問題計算方法及其應用國際會議召開
    7月8日至12日,由中科院地質與地球物理研究所和東華理工大學共同主辦的第三屆反演問題計算方法及其應用國際會議在江西省南昌市東華理工大學召開。地質地球所王彥飛研究員和莫斯科大學Yagola教授擔任會議共同主席。
  • 組合數學國際會議在南開大學召開
    人民網天津8月2日電 8月2日至4日,由中美兩國組合數學領域研究機構聯合舉辦的」組合數學、特殊函數與物理」國際學術研討會在南開大學召開。  會議由南開大學、美國洛斯阿拉莫斯國家實驗室、教育部高校數學中心、國家自然科學基金委員會、科技部「數學機械化」973項目組等共同主辦,南開大學組合數學中心承辦。
  • 什麼是計算數學?​計算數學是一門應用科學,是數學的一個分支
    計算數學是一門應用科學,是數學的一個分支,它以計算機為工具,解決生產鬥爭和科學實驗中提出的數學問題。計算數學研究各類數學問題的數值解法,以及數值計算過程本身的規律性,如數值解法的穩定性、收斂性誤差分析、計算過程的複雜性分析等基本理論。
  • 2019年IEEE計算電磁學國際學術會議在滬舉行
    近日,由我校電子與信息工程學院電子科學與技術系主任、微電子學院副院長童美松教授負責舉辦並擔任大會主席的國際學術會議「2019 IEEE International Conference on Computational Electromagnetics (ICCEM 2019)」(2019年IEEE計算電磁學國際學術會議)」在上海召開
  • 「首席架構師推薦」數值計算庫一覽表
    這是一個著名的數值庫列表,這些庫用於軟體開發中執行數值計算。它不是一個完整的列表,而是一個包含Wikipedia上文章的數字庫列表,很少有例外。NOVAS是一個用於天文相關數值計算的軟體庫。Fortran和C版本都是可用的。Netlib是一個科學計算軟體庫,其中包含大量獨立的程序和庫,包括BLAS、EISPACK、LAPACK等。PAW是CERN開發的一個免費數據分析包。
  • 我國首次舉辦電磁場計算國際學術會議
    本報瀋陽6月27日電(記者苗家生) 第15屆電磁場計算國際學術會議COMPUMAG今天在瀋陽開幕,這是國際電磁場計算學會ICS成立以來首次在中國舉行國際學術會議,來自34個國家和地區的近400名電磁界著名專家、學者參加了這次學術盛會。
  • 符號和數值混合計算的領軍人
    第七屆中國青年女科學家獎獲得者、中科院數學與系統科學研究院研究員支麗紅是國際上最早從事符號和數值混合計算的學者之一,也是國際上混合計算的領軍人物之一。她近20年來致力於融和符號計算的準確性和數值計算的高效性,有力推動了國際混合計算領域的發展。 常用的計算方法一般有兩種,一種是數值計算,一種是符號計算。
  • 研究生院舉辦現代計算地球科學國際研討會
    7月1日至2日,一年一度的現代計算地球科學國際研討會在中科院研究生院地球動力學實驗室召開。研討會圍繞當前地球科學中的焦點和熱點問題展開了熱烈討論,與會代表紛紛表示這次會議為當前地球科學研究者提供了一個良好的信息和技術交流平臺,對促進我國現代計算地球科學的發展注入了活力,並增加了與國際學者的交流和合作。
  • AI+科學計算 【AI+科學系列 · 第二期】報名了!
    《淺論超級計算、人工智慧與科學計算的融合發展:以偏微分方程求解為例》——楊超近年來,超級計算機的計算能力不斷突飛猛進,為科學計算和人工智慧領域的諸多難題的解決提供了強大的算力支撐。與此同時,科學計算和人工智慧的發展也對超級計算機的研製產生了深刻影響。
  • 2018中國計算力學大會暨國際華人計算力學大會
    來源:江蘇省力學學會公眾號2018中國計算力學大會暨國際華人計算力學大會2018中國計算力學大會暨國際華人計算力學大會將於2018年8月19-23日在南京舉行。本次會議由中國力學學會計算力學專業委員會、國際華人計算力學學會主辦,河海大學、江蘇省力學學會承辦。作為十朝古都,南京是中國的一座歷史文化名城,自公元229年起,曾先後作為吳、東晉、宋、齊、梁、陳、南唐、明、太平天國和中華民國的首都。
  • 「首席架構師推薦」計算代數系統列表
    下表提供了計算機代數系統(CAS)的比較。CAS是一個包,包含一組算法,用於對代數對象執行符號操作,一種語言來實現它們,以及使用該語言的環境。CAS可以包括用戶界面和圖形功能;要想有效,可能需要大量的算法庫、高效的數據結構和一個快速的內核General這些計算機代數系統有時與提供更好用戶界面的「前端」程序相結合,比如通用的GNU TeXmacs。
  • 「隨機偏微分方程數值計算研討會」在吉林大學召開
    9月14日—9月15日,由國家自然科學基金數學天元基金和吉林大學共同資助,天元數學東北中心和吉林大學數學學院聯合承辦的「隨機偏微分方程數值計算研討會
  • 初中代數式的概念
    1.代數式的有關概念.   (1)代數式:代數式是由運算符號(加、減、乘、除、乘方、開方)把數或表示數的字母連結而成的式子.單獨的一個數或者一個字母也是代數式.   (2)代數式的值;用數值代替代數式裡的字母,計算後所得的結果p叫做代數式的值.