摩爾定律
摩爾定律是由英特爾(Intel)創始人之一戈登·摩爾(Gordon Moore)提出來的。其內容為:當價格不變時,集成電路上可容納的元器件的數目,約每隔18-24個月便會增加一倍,性能也將提升一倍。換言之,每一美元所能買到的電腦性能,將每隔18-24個月翻一倍以上。這一定律揭示了信息技術進步的速度。
發展歷程
被稱為計算機第一定律的摩爾( Moore)定律是指IC上可容納的電晶體數目,約每隔18個月便會增加一倍,性能也將提升一倍。摩爾定律是由英特爾(lnte)名譽董事長戈登·摩爾( Gordon moore)經過長期觀察發現的。
1965年,戈登·摩爾準備一個關於計算機存儲器發展趨勢的報告。他整理了一份觀察資料。在他開始繪製數據時,發現了一個驚人的趨勢。每個新的晶片大體上包含其前任兩倍的容量,每個晶片產生的時間都是在前一個晶片產生後的18~24個月內,如果這個趨勢繼續,計算能力相對於時間周期將呈指數式的上升。 Moore的觀察資料,就是現在所謂的Moore定律,所闡述的趨勢一直延續至今,且仍不同尋常地準確。人們還發現這不僅適用於對存儲器晶片的描述,也精確地說明了處理機能力和磁碟驅動器存儲容量的發展。該定律成為許多工業對於性能預測的基礎。
歸納起來,「摩爾定律」主要有以下3種「版本」:
1、集成電路晶片上所集成的電路的數目,每隔18個月就翻一番;
2、微處理器的性能每隔18個月提高一倍,而價格下降一半;
3、用一美元所能買到的計算機性能,每隔18個月翻兩番。
以上幾種說法中,以第一種說法最為普遍,第二、三兩種說法涉及價格因素,其實質是一樣的。三種說法雖然各有千秋,但在一點上是共同的,即「翻番」的周期都是18個月,至於「翻一番」(或兩番)的是「集成電路晶片上所集成的電路的數目」是整個「計算機的性能」,還是「一美元所能買到的性能」就見仁見智了。
發現背景
早在1959年,美國著名半導體廠商仙童公司首先推出了平面型電晶體,緊接著於1961年又推出了平面型集成電路。這種平面型製造工藝是在研磨得很平的矽片上,採用一種所謂「光刻」技術來形成半導體電路的元器件,如二極體、三極體、電阻和電容等。
只要「光刻」的精度不斷提高,元器件的密度也會相應提高,從而具有極大的發展潛力。因此平面工藝被認為是「整個半導體的工業鍵」,也是摩爾定律問世的技術基礎。
1965年時任仙童半導體公司研究開發實驗室主任的摩爾應邀為《電子學》雜誌35周年專刊寫了一篇觀察評論報告,題目是:「讓集成電路填滿更多的元件」。在摩爾開始繪製數據時,發現了一個驚人的趨勢:每個新晶片大體上包含其前任兩倍的容量,每個晶片的產生都是在前一個晶片產生後的18-24個月內。
如果這個趨勢繼續的話,計算能力相對於時間周期將呈指數式的上升。摩爾的觀察資料,就是後來的摩爾定律,且仍不同尋常地準確。
人們還發現這不光適用於對存儲器晶片的描述,也精確地說明了處理機能力和磁碟驅動器存儲容量的發展。該定律成為許多工業對於性能預測的基礎。在26年的時間裡,晶片上的電晶體數量增加了3200多倍,從1971年推出的第一款4004的2300個增加到奔騰II處理器的750萬個。
發現人物
戈登·摩爾(Gordon Moore,1929-):英特爾公司(Intel)的創始人之一。
1929年1月3日,戈登·摩爾出生在加州舊金山的佩斯卡迪諾。父親沒有上過多少學,17歲就開始養家,做一個小官員,母親只有中學畢業。高中畢業後他進入了著名的加州伯克利分校的化學專業,實現了自己的少年夢想。
定律驗證
廣義驗證
1975年,在一種新出現的電荷前荷器件存儲器晶片中,的確含有將近65000個元件,與1965年摩爾的預言一致。另據Intel公司公布的統計結果,單個晶片上的電晶體數目,從1971年4004處理器上的2300個,增長到1997年PentiumII處理器上的7.5百萬個,26年內增加了3200倍。如果按「每兩年翻一番」的預測,26年中應包括13個翻番周期,每經過一個周期,晶片上集成的元件數應提高2n倍(0≤n≤12),因此到第13個周期即26年後元件數這與實際的增長倍數3200倍可以算是相當接近了。
要素驗證
也有人從個人計算機(即PC)的三大要素微處理器晶片、半導體存儲器和系統軟體來考察摩爾定律的正確性。
微處理器方面,從1979年的8086和8088,到1982年的80286,1985年的80386,1989年的80486,1993年的Pentium,1996年的PentiumPro,1997年的PentiumII,功能越來越強,價格越來越低,每一次更新換代都是摩爾定律的直接結果。與此同時PC機的內存儲器容量由最早的480k擴大到8M,16M,與摩爾定律更為吻合。
系統軟體方面,早期的計算機由於存儲容量的限制,系統軟體的規模和功能受到很大限制,隨著內存容量按照摩爾定律的速度呈指數增長,系統軟體不再局限於狹小的空間,其所包含的程序代碼的行數也劇增:Basic的原始碼在1975年只有4000行,20年後發展到大約50萬行。微軟的文字處理軟體Word,1982年的第一版含有27000行代碼,20年後增加到大約200萬行。有人將其發展速度繪製一條曲線後發現,軟體的規模和複雜性的增長速度甚至超過了摩爾定律。系統軟體的發展反過來又提高了對處理器和存儲晶片的需求,從而刺激了集成電路的更快發展[6]。
摩爾定律並非數學、物理定律,而是對發展趨勢的一種分析預測,因此,無論是它的文字表述還是定量計算,都應當容許一定的寬裕度。從這個意義上看,摩爾的預言是準確而難能可貴的,所以才會得到業界人士的公認,並產生巨大的反響[6]。
摩爾定律
修正演化
修正
1975年,摩爾在國際電信聯盟IEEE的學術年會上提交了一篇論文,根據當時的實際情況,對「密度每年一番」的增長率進行了重新審定和修正。按照摩爾本人1997年9月接受《科學的美國人》一名編輯採訪時的說法,他當年是把「每年翻一番」改為「每兩年翻一番」。實際上,後來更準確的時間是兩者的平均:18個月。
演化
摩爾第二定律:摩爾定律提出30年來,集成電路晶片的性能的確得到了大幅度的提高;但另一方面,Intel高層人士開始注意到晶片生產廠的成本也在相應提高。1995年,Intel董事會主席羅伯特·諾伊斯預見到摩爾定律將受到經濟因素的制約。同年,摩爾在《經濟學家》雜誌上撰文寫道:「令我感到最為擔心的是成本的增加,...,這是另一條指數曲線」。他的這一說法被人稱為摩爾第二定律。
新摩爾定律:中國IT專業媒體上出現了「新摩爾定律」的提法,指的是中國Internet聯網主機數和上網用戶人數的遞增速度,大約每半年就翻一番。而且專家們預言,這一趨勢在未來若干年內仍將保持下去。
意義介紹
「摩爾定律」歸納了信息技術進步的速度。在摩爾定律應用的40多年裡,計算機從神秘不可近的龐然大物變成多數人都不可或缺的工具,信息技術由實驗室進入無數個普通家庭,網際網路將全世界聯繫起來,多媒體視聽設備豐富著每個人的生活[6]。
由於高純矽的獨特性,集成度越高,電晶體的價格越便宜,這樣也就引出了摩爾定律的經濟學效益。在20世紀60年代初,一個電晶體要10美元左右,但隨著電晶體越來越小,直到小到一根頭髮絲上可以放1000個電晶體時,每個電晶體的價格只有千分之一美分。據有關統計,按運算10萬次乘法的價格算,IBM704電腦為1美元,IBM709降到20美分,而60年代中期IBM耗資50億研製的IBM360系統電腦已變為3.5美分。
「摩爾定律」對整個世界意義深遠。在回顧40多年來半導體晶片業的進展並展望其未來時,信息技術專家們認為,在以後「摩爾定律」可能還會適用。但隨著電晶體電路逐漸接近性能極限,這一定律終將走到盡頭。40多年中,半導體晶片的集成化趨勢一如摩爾的預測,推動了整個信息技術產業的發展,進而給千家萬戶的生活帶來變化。
以上內容來自百度百科。
關注微信公眾號——每天的學習筆記。 每天更新一個小知識。