Hope everybody can study well and make progress every day!
Transcriptional repression specifies the central cell for double fertilization
First author: Meng-Xia Zhang; Affiliations: CAS Institute of Genetics and Developmental Biology (中科院遺傳與發育生物學研究所): Beijing, China
Corresponding author: Hong-Ju Li
Double fertilization is a key innovation for the evolutionary success of angiosperms by which the two fertilized female gametes, the egg cell and central cell, generate the embryo and endosperm, respectively. The female gametophyte (embryo sac) enclosed in the sporophyte is derived from a one-celled haploid cell lineage. It undergoes successive events of mitotic divisions, cellularization, and cell specification to give rise to the mature embryo sac, which contains the two female gametes accompanied by two types of accessory cells, namely synergids and antipodals. How the cell fate of the central cell is specified has long been equivocal and is further complicated by the structural diversity of female gametophyte across plant taxa. Here, MADS-box protein AGL80 was verified as a transcriptional repressor that directly suppresses the expression of accessory cell-specific genes to specify the central cell. Further genetic rescue and phylogenetic assay of the AGL80 orthologs revealed a possible conserved mechanism in the Brassicaceae family. Results from this study provide insight into the molecular determination of the second female gamete cell in Brassicaceae.
雙受精(double fertilization)是被子植物演化成功的關鍵創新之一,由兩種受精的雌配子,分別為卵細胞(egg cell)和中央細胞(central cell),形成胚胎和胚乳組織。包含在孢子體內的雌配子體,即胚囊(embryo sac),來源於單個細胞的單倍體細胞系。它會連續經歷有絲分裂、細胞化以及細胞特化事件,發育為成熟的胚囊,其包含兩個雌配子,並伴有兩種類型的輔助細胞,即助細胞(synergid)和反足細胞(antipodal)。長期以來,中央細胞的細胞命運如何特化的一直模糊不清,並且由於整個植物類群中雌配子體的結構十分多樣化,使得該方向的研究變得更加複雜。本文中,作者發現MADS-box蛋白AGL80作為一個轉錄抑制子,能夠直接抑制輔助細胞特異基因的表達,從而維持中央細胞的特化。進一步的遺傳拯救試驗以及系統發育分析顯示十字花科家族不同物種之間具有保守的AGL80功能。本文的研究為十字花科中控制中央細胞細胞命運的分子機制提供了新的視野。
Significance
Double fertilization is a key innovation of flowering plants. The central cell is the second female gamete, and its fertilization gives rise to the endosperm, the nurse of a seed. However, how this cell is specified and evolved in angiosperm remains unknown. This study reveals a transcriptional repression mechanism to specify the central cell in Arabidopsis and provides insight into the origination of this mechanism in Brassicaceae.
雙受精是有花植物最關鍵的創新之一。中央細胞作為第二個雌配子,其在受精後會形成種子胚胎發育的主要營養供給組織~胚乳。然而,中央細胞是如何特化的以及在被子植物中的起源與演化都還不清楚。本文的研究揭示了一個擬南芥中央細胞特化的轉錄抑制機制,並探討了十字花科中該機制的起源。
通訊:李紅菊 (http://sourcedb.genetics.cas.cn/zw/zjrck/201711/t20171129_4901336.html)
個人簡介:2004年,河北師範大學,學士;2010年,遺傳發育所,博士。
研究方向: 1. 植物細胞極性建立和極性生長的分子調控機理;2. 植物受精過程中生殖隔離的分子基礎。
doi: https://doi.org/10.1073/pnas.1909465117
Journal: PNAS
Published date: March 04, 2020
p.s. 相關方向延伸閱讀:
每日摘要:花粉管生長中完整性的維持與定點定時「爆破」
每日摘要:擬南芥母本生長素作用於早期胚胎發育
每日摘要:植物精細胞特異性表達DUF679膜蛋白助力配子融合(Nature Plants)
每日摘要:擬南芥胚乳表達基因ICE1和ZOU作用於種子休眠(the plant journal)
每日摘要:擬南芥胚胎的成熟並不依賴於胚乳細胞化(the plant journal)
每日摘要:生長素調控擬南芥的胚乳細胞化(Genes & Development)
每日摘要:植物類受體激酶介導的信號傳導作用於雄性-雌性互作(CURR OPIN PLANT BIOL)
每日摘要:擬南芥花粉管精確遞送及釋放精細胞(Current Biology)
每日摘要:無融合生殖研究為未來作物育種提供更所可能(Trends in Genetics)
偶爾精讀:植物胚胎-胚乳雙向多肽信號調控胚胎表皮沉積~上篇(Science)
偶爾精讀:植物胚胎-胚乳雙向多肽信號調控胚胎表皮沉積~下篇(Science)