-
z=f(x^2-y^2,ln(x-y))求z對x,y的
主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
-
z=f(x^2-y^2,ln(x-y))求z對x,y
2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法: 對函數z求全微分得: dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即: dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy, 根據全微分與偏導數的關係,得: dz/dx=2xf1'+f2』/(x-y), dz/dy=-
-
z=f(x^2-y^2,ln(x-y))求z對x,y的偏
主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
-
z=f(x^2-y^2,ln(x-y))求z對x,y的偏導
主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
-
z=f(x^2-y^2,ln(x-y))求z對x,y的偏導數
主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
-
x^2/3+y^2/2+z^2/2=1,求x+y+z的取值範圍
主要內容:通過柯西不等式、換元法及構造多元函數法,介紹x+y+z在滿足給定條件x^2/3+y^2/2+z^2/2=1下的取值範圍。主要公式:1.柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2.
-
已知函數y=x^3-x,求切線及極值問題。
2021-01-01 08:10:02 來源: 楚鄂新阿 舉報 主要內容: 已知函數
-
若f(x+y)=f(x)+f(y)則f(x)=kx嗎?
已知函數f(x)滿足:對於任意x,y∈R,f(x+y)=f(x)+f(y)⋯對於任意x,y∈R,f(x+y)=f(x)⋅f(y)⋯對於任意x,y>0 ,f(xy)=f(x)+f(y)⋯>對於任意x,y>0 ,f(xy)=f(x)⋅f(y)⋯對於這類題目,數學佬一貫是這樣做的。
-
導數法求2x^2+y^2的最小值
方法一:導數法設所求最小值為t(t為常數),則2x^2+y^2=t,可求出函數y對x的導數,此時的導數並與已知條件中y對x的導數相等,即可求得最小值。由2x^2+y^2=t,兩邊對x求導得:4x+2y*dy/dx=0,即:dy/dx=-2x/1y;對已知條件方程兩邊同時求x導數得:14xy^2+7x^2*2y*dy/dx +4y^3*dy/dx=0,此時dy/dx=-7xy^2/(2y^3+7x^2y),兩處導數相等得:-7xy^2/(2y^3+7x^2y)=-2x
-
當x=1時,計算y=x^2+x+1的增量和微分
主要內容:本文介紹二次函數y=x^2+x+1在x=1時,自變量增量△x分別在1、0.1、0.01情形下增量和微分得計算步驟。主要步驟方法:y=x^2+x+1,方程兩邊同時求微分,得:dy=(2x+1)dx,此時函數的增量△y為:△y=(x+△x)^2+(x+△x)+1-(x^2+x+1),即:△y=(2x+1)△x+(△x)^2.對於本題已知x=1,則:dy=3dx,△y=3△x+(△x)^2。
-
分式微分方程(2x^3+3xy^2+x)/(3x^2y+2y^3-y)的通解
本文主要內容,通過數學變形,並利用可分離變量方法求解分式微分方程dy/dx=(2x^3+3xy^2+x)/(3x^2y+2y^3-y)的通解。第一步:微分方程基本變形:dy/dx=(2x^3+3xy^2+x)/(3x^2y+2y^3-y),右邊分母分子分別提取公因式x,y,則:dy/dx=x(2x^2+3y^2+1)/y(3x^2+2y^2-1),將右邊提出的x,y移動到等號左邊。
-
求y=√(x^2+1)+√(x-1)^2+1的最
主要內容:通過兩點間直線距離最短以及函數的導數,介紹求解根式和y=√(x^2+1)+√[(x-1)^2+1]最小值的步驟。主要公式:1.兩點間距離公式|AB|=√[(a1-b1)^2+(a2-b2)^2];2.冪函數導數公式:y=x^(1/2),則dy/dx=(1/2)x^(-1/2)。
-
高中:給出x,y的不等式求x+y的值?關鍵在於如何構建函數
原題原題:已知實數x,y滿足3x-y≤ln(x+2y-3)+ln(2x-3y+5),則x+y=?圖一題中只給出了一個關於x,y的不等式,想導出x+y的值是非常困難的,那這道題該如何解決呢?令x+2y-3=m,2x-3y+5=n,m>0,n>0,則x=(3m+2n-1)/7,y=(2m-n+11)/7,3x-y=m+n-2,x+y=(5m+n+10)/7。
-
x和y的倒數差為1/3,求7y+16xy-7x有關代數式的值
主要內容:通過換元法和代數變形法,求解已知條件下的代數式值。換元法:∵1/x-1/y=1/3∴(y-x)/xy=1/3,設y-x=t,xy=3t,t≠0,則:(7y+16xy-7x)/(5y-5x-21xy)=[7(y-x
-
y=f(x)與x=f(y)是同一個函數?
y=f(x)與x=f(y)是同一個函數?請先關注再下單學習微積分有什麼用?調查顯示:這些領域都已經和它息息相關了!(見另一專欄《微積分從入門到精通第一關——心理關》)x是常量還是變量?函數的概念對於中學生和大學新生來說從來似乎都沒有弄明白過,x和y在他們的眼中依然是代表數字的字母或者是未知量。(啥,難道不是代表數字的字母嗎?
-
計算y1=1/x,y2=x與x=e圍成的面積
方法一:微元dx計算區域面積此時畫出曲線y1=1/x與直線y2=x、x=e圍成的區域示意圖,先求曲線y1與直線y2的交點,即:1/x=xx^2=1,取正數x1=1。此時面積定積分表示為:S=∫[x1,x2](y2-y1)dx=∫[1,e](x-1/x)dx=1/2*x^2-lnx[1,e]=1/2*e^2-lne-1/2=1/2*e^2-1-1/2=1/2*e^2-3/2。
-
微分方程y〞+y=(sin2x+cos2x)e^2x怎麼解?
微分方程的特徵方程為:r2+1=0,r1,2=±i,即該方程的齊次微分方程的通解為:y*=c1sinx+c2cosx又因為λ+iw=2+2i,不是特徵方程的根,則設特解為:y1=(msin2x+ncos2x)e
-
計算y1=1/x,y2=x與x=e圍成的面
方法一:微元dx計算區域面積 此時畫出曲線y1=1/x與直線y2=x、x=e圍成的區域示意圖,先求曲線y1與直線y2的交點,即: 1/x=x⇒x^2=1,取正數x1=1。 此時面積定積分表示為: S=∫[x1,x2](y2-y1)dx =∫[1,e](x-1/x)dx =1/2*x^2-lnx[1,e] =1/2*e^2-lne-1/2 =1/2*e^2-1-1/2 =1/2*e^2-3/2。
-
求圓x^2+y^2=4上點A(a,b)處切線的方法
主要內容:介紹通過解析幾何法、導數幾何意義法,求解經過圓x^2+y^2=4上點A(1,√3)處切線的方法和步驟。解法一:解析幾何法設切線的斜率為k,則切線的方程為:y-√3=k(x-1),代入圓的方程得:x^2+[k(x-1)+√3]^2=4x^2+k^2(x-1)^2+2√3(x-1)k-1=0(1+k^2)x^2-2k^2x+k^2+2√3kx-2√3k-1=0(1+k^2)x^2-2k(k-√
-
用導數求函數y=x+1/x的單調區間
主要內容:求解函數y=x+1/x的一階導數判斷函數的單調性。一階導數為零(駐點)或不存在的點可能恰好是單調區間的分界點,這些分界點將函數的定義域分劃成若干個部分單調區間。解:函數單調區間分析過程如下:當x=0時,函數y=x+1/x無定義, 故函數在x=0處不可導;當x≠0時,導函數為y'=1-1/x^2=(x^2-1)/x^2;令y'=0得:x=±1。