SnRK2激酶調控植物生長和脅迫響應的機制

2020-10-25 BioArt植物

Nature Plants | SnRK2激酶調控植物生長和脅迫響應的機制

撰文 | Qu GP

責編 | 逸雲


脫落酸(abscisic acid,ABA)是植物響應乾旱、鹽脅迫等逆境產生的一種內源激素。ABA與受體蛋白PYR/PYL結合後,解除磷酸酶PP2C對激酶SnRK2活性的抑制,激活SnRK2,誘導植物脅迫響應,抑制生長。SnRK1(SNF1-related protein kinase 1)是一類進化保守的逆境響應因子,通過抑制生長促進因子TOR(target of rapamycin)活性,抑制生長。已有研究表明ABA可以激活SnRK1活性,但其分子機制目前尚不清楚【1】

近日,葡萄牙Elena Baena-González 研究組在Nature Plants在線發表了一篇題為A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth的研究論文,揭示了SnRK2激酶調控SnRK1活性和植物生長的分子機制。


已有研究表明,ABA誘導的TOR活性抑制依賴於SnRK2【2】,但該研究並沒有檢測到SnRK2TOR蛋白互作。該研究發現,ABA促進SnRK1TOR蛋白互作,引發TOR活性抑制。進一步地實驗證明,PP2C介導SnRK1和SnRK2蛋白互作,而ABA抑制SnRK2-PP2C-SnRK1間蛋白互作。這些結果表明ABA信號通路重要調控因子SnRK2可能通過調控SnRK1活性間接調控TOR功能。


正常生長條件下,SnRK2過表達株系具有長的主根長度,突變體snrk2d具有短的主根和側根長度,且該表型能被snrk1恢復。另外,snrk2d突變體中SnRK1活性更強,相應的TOR活性降低。這些結果表明,在正常生長條件下SnRK2通過抑制SnRK1活性促進根的生長發育。


A dual function of SnRK2 kinases in the regulation of SnRK1 and growth.


綜上,正常生長條件下,SnRK2、PP2C與SnRK1形成複合體,抑制SnRK1活性,生長促進因子TOR能正常行使功能,促進生長;逆境條件下,植物產生ABA,ABA促進PYR/PYL與PP2C結合,並使SnRK2-PP2C-SnRK1複合體解離,SnRK1被激活,抑制TOR活性,抑制生長。SnRK2是一類陸生植物特異的激酶家族,ABA-PP2C-SnRK2信號組件可能通過調控SnRK1-TOR活性,在植物從水生到陸生演化過程中起重要作用。


參考文獻:

[1] Rodrigues, A. et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25, 3871–3884 (2013).

[2] Wang, P. et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell 69, 100–112 e106 (2018).


原文連結:

https://doi.org/10.1038/s41477-020-00778-w

相關焦點

  • 朱健康院士等揭示SnRK2蛋白激酶調控miRNA合成的新機制—新聞...
    朱健康院士等揭示SnRK2蛋白激酶調控miRNA合成的新機制   本報訊(記者黃辛)中科院上海植物逆境生物學研究中心朱健康研究組揭示了植物ABA信號轉導和滲透脅迫的關鍵蛋白激酶SnRK2參與了miRNA生物合成的調控。
  • 【綜述 】MEP和MVA途徑在植物生長發育和脅迫響應​中研究進展
    與動物的IPP和DMAPP完全是由甲羥戊酸途徑(簡稱MVA途徑)提供不同,植物利用甲基赤蘚醇磷酸途徑(簡稱MEP途徑)和MVA途徑提供IPP和DMAPP,且MEP和MVA途徑的蛋白被分隔不同的細胞區室,包括葉綠體、胞質、內質網和過氧化物酶體。由於許多重要的植物激素(包括ABA、GA和BR等)合成的前體物質都是由MEP和MVA途徑提供的,因此,MEP和MVA途徑參與了植物生長發育的各個方面。
  • 遺傳發育所謝旗研究組發表「泛素化修飾調控植物低磷脅迫響應」的...
    磷是植物生長發育必需的大量元素之一,土壤中低磷脅迫會影響植物的生長並影響作物的產量。我國是世界上磷肥使用量最大的國家,施用磷肥在提高作物產量的同時也帶來了一系列環境汙染問題。因此,解析植物對低磷脅迫的響應機制並培育磷高效利用的作物是作物育種上的一個重要研究方向。
  • ROP-ROS信號通路調控植物滲透脅迫響應的新機制
    Current Biology | ROP-ROS信號通路調控植物滲透脅迫響應的新機制責編 | 逸雲乾旱及鹽害等環境脅迫引起的滲透脅迫已成為限制作物生長和產量形成的關鍵因素之一。植物通過複雜的信號網絡感知外界環境的滲透變化並作出響應。
  • 朱健康院士2020年度發表6篇綜述文章,涉及植物非生物脅迫的響應、基因編輯技術、表觀遺傳調控及植物激素ABA的研究進展等
    該綜述從鹽脅迫誘導的生理反應、氧化脅迫、鹽脅迫感受機制、離子和滲透脅迫信號傳遞、細胞器脅迫、激素調控、基因表達和表觀遺傳調控、離子平衡機制、代謝變化、鹽生植物耐鹽機制等多方面系統闡述了最近20多年在鹽脅迫領域取得的研究進展。
  • 中科院植物逆境中心趙楊/朱健康合作發現植物滲透脅迫應答新機制
    植物因其固著生長的特性而難以躲避所受到的滲透脅迫,被迫進化出感知和適應逆境的機制,主要包括信號接收與傳導、植物激素脫落酸(ABA)相關調控和後期應答等過程。目前ABA途徑的信號傳導與滲透脅迫後期應答機制已基本解析,然而,對於植物如何感受外界的滲透脅迫信號,以及如何傳遞信號到細胞內並引起早期應答的分子機制仍不清楚。
  • 植物如何在紫外光線的脅迫下協調生長
    Plant Cell | 中科院分子植物卓越中心劉宏濤研究組揭示植物平衡生長和抗紫外脅迫的新機制責編 | 奕梵紫外光UV-B是太陽光的一部分,其中窄波段UV-B調控植物發育,如抑制下胚軸伸長,促進子葉張開,促進
  • 雲南大學科研團隊解析褪黑素調控植物生物逆境脅迫的機制
    . | 雲南大學科研團隊解析褪黑素調控植物生物逆境脅迫的機制責編 | 逸雲褪黑素(N-乙醯基-5-甲氧基色胺,melatonin)是一種起源於35億年前原核細菌的古老分子,在細菌、真菌、原生生物、藻類、動物和植物等生物體中均普遍存在。
  • 廣州大揭示生物鐘基因GmLHY調控大豆乾旱脅迫響應的分子機制
    . | 廣州大學劉寶輝/李美娜團隊揭示生物鐘基因GmLHY調控大豆乾旱脅迫響應的分子機制責編 | 逸雲>生物鐘在植物開花、植物激素生物合成和非生物脅迫響應等多種生物過程中起著重要作用。生物鐘基因在模式植物中調節乾旱脅迫響應的方式已經得到了很好的研究,而在作物物種中卻知之甚少,例如全球主要作物大豆。
  • Plant Cell|兩個相互作用的乙烯響應因子調節植物的熱脅迫響應
    #BioArt植物#責編 | 王一溫度影響植物的生長、發育以及地理分布。在過去的200年間,人類活動使大氣中溫室氣體的含量增加,導致全球變暖,預計氣溫將比工業化前的水平高約0.8°C ~1.2°C。全球變暖的危害之一就是會降低農作物的產量【1,2】。因此,解析植物應對高溫脅迫的分子機制對於未來提高農業生產總量,保證糧食安全至關重要。
  • 科學家揭示植物平衡生長和抗紫外脅迫的新機制
    中國科學院分子植物科學卓越創新中心劉宏濤研究團隊的研究有了新發現,揭示了油菜素甾醇信號平衡植物生長和抗紫外脅迫的新機制,相關研究論文近日發表於《植物細胞》。紫外光UV—B是太陽光的一部分,其中窄波段UV-B調控植物發育,如:抑制下胚軸伸長,促進子葉張開,促進類黃酮和花青素的積累等。全波段UV—B會引起脅迫,對植物造成損傷。引起脅迫反應的UV—B會破壞DNA,引發活性氧積累,並損害光合作用。
  • Cell重磅:朱健康院士綜述植物非生物脅迫信號轉導
    作為固定的生物,植物必須適應土壤鹽鹼害、乾旱以及極端溫度等非生物脅迫。植物主要脅迫信號途徑與酵母SNF1激酶和哺乳動物AMPK激酶有關,顯示這些途徑可能由能量感知途徑進化而來。脅迫信號通過調控離子和水的運輸,代謝和轉錄重組過程中的關鍵蛋白以維持脅迫條件下離子和水的動態平衡,保持細胞的穩定。
  • 雲南大學趙大克博士等發表褪黑素調控植物生物逆境脅迫機制進展
    該論文系統總結了褪黑素增強植物生物逆境脅迫抗性的功能、分子機制及演化路徑,並提出了褪黑素在今後農業生產中的應用潛力。   褪黑素(N-乙醯基-5-甲氧基色胺,melatonin)是一種起源於35億年前原核細菌的古老分子,在細菌、真菌、原生生物、藻類、動物和植物等生物體中均普遍存在。
  • 植物是何如「防曬」的?科學家揭示了植物平衡生長和抗紫外脅迫的新機制
    」的研究論文,本文揭示了油菜素甾醇信號平衡植物生長和抗紫外脅迫的新機制。紫外光UV-B是太陽光的一部分,其中窄波段UV-B調控植物發育,如抑制下胚軸伸長,促進子葉張開,促進類黃酮和花青素的積累等。全波段UV-B會引起脅迫,對植物造成損傷。引起脅迫反應的UV-B會破壞DNA,引發活性氧積累,並損害光合作用。
  • BR調控側根發育提高植物鹽脅迫耐受研究取得進展
    該研究揭示了油菜素甾醇激素信號調控細胞壁重構參與側根原基的起始來響應鹽脅迫的新機理。油菜素甾醇在植物生長發育中有重要作用,參與調控植物發育的多個方面,包括莖葉和根的生長、維管組織的分化、育性、種子萌發、頂端優勢、光形態建成等。此外,在介導植物對環境脅迫的響應中有關鍵作用。
  • 植物平衡生長發育與逆境應答的分子機制研究獲進展
    由於固著生長的特性,植物不能像動物一樣有效躲避外界的不利因素。因此,其生長發育會受到各種逆境脅迫的影響。而對這些逆境脅迫及時、有效地響應,是植物存活的前提。植物激素脫落酸(Abscisic acid, ABA)被稱為「逆境激素」,參與植物的乾旱、冷和鹽等逆境脅迫的應答過程。
  • 亞熱帶生態所揭示密度影響溼地植物對乾旱脅迫的響應機制
    密度是影響植物生長及群落結構的重要因子,但其影響具有兩面性。一方面由於對光照、養分等資源的競爭限制植物生長,另一方面較高的密度可通過改善微生境促進植物生長。受季節性水位波動的影響,溼地植物常面臨洪水和乾旱雙重脅迫,但密度如何影響植物對乾旱脅迫的響應仍不清楚。
  • Plant Cell精選文章概述 | ABA 平衡植物生長與代謝
    ABA參與調控生長與代謝的機制。從分子層面上講,很多乾旱響應基因是由ABA 信號調控的。ABA 的這些屬性與其在植物體中的含量一致。ABA在缺水條件下的種子和營養組織中大量積累。此外,ABA在非脅迫條件下也有一定作用,例如菸草葉片中的ABA 水平會隨晝夜變化而波動。核心問題:我們想要了解ABA 是否在非脅迫條件下參與調節植物生長與初級代謝。
  • 植物所揭示NADPH氧化酶響應逆境脅迫的自我調節機制
    NADPH氧化酶是一種與哺乳動物嗜中性粒細胞gp91phox同源的氧化還原酶,主要參與植物的防禦反應,並調節植物的生長發育。當植物受到生物或非生物脅迫時,該酶會大量產生活性氧,使植物及時對逆境脅迫做出反應,以適應外界環境的變化。
  • 模塊式植物表型分析技術方案(七) ——擬南芥UV脅迫的響應機制
    ​植物面對各種生物和非生物脅迫時,會調整它們的響應機制來優化發育和適應程序。UV輻射作為一種環境因子,會影響植物的光合過程並觸發細胞死亡。華沙生命科學大學的AnnaRusaczonek評估了紅/遠紅光感受器光敏色素A和光敏色素B在擬南芥UV脅迫響應中的作用。