麻省理工學院發現新型量子探測技術
可用於檢測人體器官病變
最近,麻省理工學院生物學工程系主任Angela Belcher和博士後Ching-Wei Lin,在學術期刊Nature Communications上發表了最新研究論文,其中描述了一種基於碳納米管的單光子發射器。研究人員將碳納米管浸沒在漂白劑中,產生氧原子(紅色),其與納米管的碳原子(黑色)反應(見下圖一),當用紫外線照射時,形成螢光量子缺陷,作為檢測人體器官病變(見下圖二)的簡單解決方案。
基於碳納米管制造的光學缺陷探針(通常將靶向材料與缺陷探測碳納米管結合)將極大地改善醫學成像質量,從而能夠及時進行癌症檢測和治療,例如早期檢測和圖像引導手術。
圖一
圖二
Research from Angela Belcher, head of the MIT Department of Biological Engineering and postdoc Ching-Wei Lin, published online in Nature Communications, describes a simple solution to create carbon-nanotube based single-photon emitters, which are known as fluorescent quantum defects.
The defect carbon nanotube-based optical probes (usually to conjugate the targeting materials to these defect carbon nanotubes) will greatly improve the imaging performance, enabling cancer detection and treatments such as early detection and image-guided surgery.
美國洛斯阿拉莫斯國家實驗室開發新量子算法
最近,來自美國洛斯阿拉莫斯國家實驗室(LANL)的科學家們開發出一種新量子算法,可以使大眾更清晰地理解量子——經典之間的轉變,這有助於模擬量子和經典世界,如生物蛋白質領域的尖端科技系統,並有助於解決量子力學應用於大型物體的問題。
根據實驗室專研凝聚態物質和複雜系統的物理學家派屈克科爾斯的說法,他們可以用此次發現的新算法研究數百個量子位的量子計算機,基於當前該領域的進展,預計未來幾年內將成功推出此種量子計算機。
(白色十字代表源自新算法的簡單量子問題的解決方案)
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
From Patrick Coles of the Physics of Condensed Matter and Complex Systems group at Los Alamos National Laboratory, they could study a quantum computer consisting of several hundred qubits with the new algorithm, which they anticipate will be available in the next few years based on the current progress in the field.
卡爾斯魯厄理工學院成功使用粒狀鋁
構成長相干磁通量子比特
最近,來自卡爾斯魯厄理工學院物理研究所和納米技術研究所的科學家,聯合來自莫斯科國立鋼鐵合金學院的研究人員,首次使用了粒狀鋁(grAl)作為超導材料,成功製造了長相干的量子比特。
此項研究成果發表於學術期刊Nature Materials。研究表明,科學家測量的由粒狀鋁構成的磁通量子比特(見下圖),其相干時間高達30微秒。因此,相關科學家預測,粒狀鋁可以為新型複雜量子比特的設計開闢研究途徑,對於跨越量子計算和量子硬體的當前局限也有重要意義。
由粒狀鋁構成的磁通量子比特
Scientists at the Physics Institute and Institute of Nanotechnology of the Karlsruhe Institute of Technology, as well as those from the National University for Research and Technology MISIS in Moscow, have now used for the first time granular aluminum (grAl) as superconducting material for high coherence qubits.
As the scientists report in the journal Nature Materials, they measured a grAl fluxonium qubit with coherence time of up to 30 microseconds. The results show that granular Aluminum can open avenues of research for a new class of complex qubit designs and help overcome the current limitations of quantum computing and quantum hardware.
羅格斯大學物理學家發現扭曲雙層石墨烯
有助於研發超導材料
最近,來自羅格斯大學,由Eva Andrei教授領導的物理研究團隊發現石墨烯中存在莫爾圖案,命名為「扭曲雙層石墨烯」。團隊認為這將為解開材料物理學的奧秘開闢道路。研究團隊使用掃描隧道顯微鏡,記錄了扭曲雙層石墨烯中的莫爾圖案(下左圖)和其電荷光譜(下右圖,正(藍色)和負(紅色)電荷條紋):
研究結果發表於《自然》雜誌,對於開發可在室溫下工作的量子材料,如超導體來說,有重要意義。扭曲雙層石墨烯將大幅降低能量消耗,使電力傳輸和電子設備更高效運行。
A Rutgers physical research team, led by Professor Eva Andrei, has paved the way to solving one of the most enduring mysteries in materials physics by discovering that in the presence of a moiré pattern in graphene, called twisted bilayer graphene.
Their findings, published in the journal Nature, could help in the search for quantum materials, such as superconductors, that would work at room temperature. Such materials would dramatically reduce energy consumption by making power transmission and electronic devices more efficient.
慕尼黑工業大學物理學家
開發納米級精確的量子光源放置方法
最近,來自慕尼黑工業大學(TUM)的物理學家Alexander Holleitner和Jonathan Finley領導的國際團隊用氦離子轟擊薄硫化鉬層,成功地將光源放置在原子級厚度的材料層中,精確度以納米計。這種新方法為開發量子技術的諸多應用提供了可能性,例如量子傳感器、智慧型手機中的電晶體、甚至可用於數據傳輸的量子加密技術。
By bombarding thin molybdenum sulfide layers with helium ions, an international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers.
The new method allows for a multitude of applications in quantum technologies, from quantum sensors and transistors in smartphones through to new encryption technologies for data transmission.
部分圖片來源於網絡
編譯:Jasmine