氮化硼和石墨烯片夾心的單原子催化劑實現非強非弱極化電場用於高效固氮
作者:
小柯機器人發布時間:2020/10/29 13:33:06
採用第一性原理計算,研究小組報告一個單個過渡金屬原子(TM)夾在六角氮化硼(h-BN)和石墨烯薄片(即BN / TM / G)作為一個高效的單原子催化劑(SACs)的電化學氮還原反應(NRR)。這樣的夾層結構實現了穩定且可控的界面極化場,使得過渡金屬原子向鄰近B原子提供電子而成為活性位點。因此,B原子的部分被佔據的pz軌道可以與N2的反鍵形成B-N 反饋π鍵, 從而削弱N≡N鍵。這個h-BN表面不強不弱的電場進一步促進N2吸附和活化。BN/TM/G體系的NRR催化活性與TM原子正極化電荷的程度具有很高關聯性。
特別的是,BN/Ti/G和BN/V/G被認為是有希望的NRR催化劑,具有高穩定性、提供優異能量效率以及抑制競爭產氫反應的性質。
研究人員表示,開發具有高效固氮作用的單原子催化劑(SACs)是非常重要的,同時仍然是一個巨大的挑戰。缺乏一個有效的策略來控制單原子催化劑的極化電場限制了他們的活性和和選擇性。
附:英文原文
Title: Realizing a Not-Strong-Not-Weak Polarization Electric Field in Single-Atom Catalysts Sandwiched by Boron Nitride and Graphene Sheets for Efficient Nitrogen Fixation
Author: Shaobin Tang, Qian Dang, Tianyong Liu, Shiyong Zhang, Zhonggao Zhou, Xiaokang Li, Xijun Wang, Edward Sharman, Yi Luo, Jun Jiang
Issue&Volume: October 27, 2020
Abstract: Developing efficient single-atom catalysts (SACs) for nitrogen fixation is of great importance while remaining a great challenge. The lack of an effective strategy to control the polarization electric field of SACs limits their activity and selectivity. Here, using first-principles calculations, we report that a single transition metal (TM) atom sandwiched between hexagonal boron nitride (h-BN) and graphene sheets (namely, BN/TM/G) acts as an efficient SAC for the electrochemical nitrogen reduction reaction (NRR). These sandwich structures realize stable and tunable interfacial polarization fields that enable the TM atom to donate electrons to a neighboring B atom as the active site. As a result, the partially occupied pz orbital of a B atom can form B-to-N π-back bonding with the antibonding state of N2, thus weakening the N≡N bond. The not-strong-not-weak electric field on the h-BN surface further promotes N2 adsorption and activation. The NRR catalytic activity of the BN/TM/G system is highly correlated with the degree of positively polarized charges on the TM atom. In particular, BN/Ti/G and BN/V/G are identified as promising NRR catalysts with high stability, offering excellent energy efficiency and suppression of the competing hydrogen evolution reaction.
DOI: 10.1021/jacs.0c09527
Source: https://pubs.acs.org/doi/10.1021/jacs.0c09527