高斯的五大成就

2020-10-18 火星科普

德國數學家、物理學家約翰·卡爾·弗裡德裡希·高斯是人類有史以來最偉大的三大數學家之一,他被譽為「數學王子」。高斯無疑是一位天才,他七歲就能在頭腦中進行複雜方程式計算。高斯一生在諸多領域做出了重要的貢獻,他的發現改變了我們處理空間、科學和幾何學的方式。最近是高斯241周年誕辰紀念日,藉此機會,我們來看看他的一些最有趣的成就。

(5)正十七邊形。1796年,19歲的高斯發現了如何只用一把尺子和一個圓規來構造一個正十七邊形。這是自2000多年前古希臘人以來,多邊形構造的首次進步。高斯用代數來證明他的構造,橋接了代數和幾何之間的一個關鍵鴻溝。

(4)穀神星的軌道。這顆矮行星最初是由天文學家朱塞普·皮亞齊在1800年發現的,穀神星在天文學家計算出它的軌道之前,就已經消失在太陽的後面。高斯創立了一種叫做最小二乘法的模型,這是一種計算觀測誤差的方法,可以準確預測這顆矮行星的位置。直到現在,高斯發明的這種計算方法仍然是在兩個變量之間找到精確關係的首選方法。

(3)天體運動理論。1809年,高斯出版了關於天體在太空中運動的專著《天體運動理論》。該著作中描述了被大行星幹擾的小行星運動,簡化了軌道預測的繁瑣數學運算。時至今日,高斯當年的研究仍然是天文學計算的基石。

(2)第一臺電報機。這也許不是高斯最著名的成就,但相當有創意。在1833年,高斯和物理學教授威廉·韋伯發明了第一臺電磁電報機。在哥廷根大學,他們倆一直在磁學領域不斷合作。他們建造了第一臺電報機,以連接天文臺和物理研究所,這個系統能夠每分鐘發送8個單詞。

(1)日光反射鏡。從1818年到1832年,高斯對漢諾瓦進行了大地測量。在這段時間裡他發明了日光反射鏡,這是一種大大改善長距離土地測量的儀器。日光反射鏡用一面鏡子把太陽光反射到遙遠的地方,可以達到幾百千米遠,這能夠為測量員標記位置。可惜,這種儀器需要在天氣晴朗的情況下才有很好的效果。到了20世紀80年代,GPS技術取代了它。

相關焦點

  • 高斯為什麼是數學王子?人家3歲時的成就,很多人一輩子也比不上
    其實這個問題與天賦有關,因為僅僅在高斯3歲的時候,他就已經展現出了過人的才華。高斯出生於一個貧困人家,但幸運的是,高斯的人生似乎一直順風順水,他的身邊從來不缺少伯樂和支持他事業的人。在高斯三歲的時候,他就已經能夠幫助父親糾正帳本的錯誤了,而在8歲的時候,這位小天才已經家喻戶曉,但當時的人們只知道高斯的計算能力比同齡的小孩出眾,並不知道高斯以後的人生會如此出色。
  • 物理學家高斯被數學光芒罩住了
    原文刊發於《物理教師》2012,33(2):45-46 「數學王子」桂冠下的物理學家—高斯 陳 勇 邱麗芬 摘要:高斯(Gauss)在數學上有著卓越的貢獻,人們賦予其「數學王子」的桂冠.大多數人是由於高斯的數學成就而了解他,鮮有人了解其隱藏在數學桂冠下的物理成就
  • 數學天才——高斯的故事
    迪德裡赫後來娶了羅捷雅,第二年他們的孩子高斯出生了,這是他們唯一的孩子。父親對高斯要求極為嚴厲,甚至有些過份,常常喜歡憑自己的經驗為年幼的高斯規劃人生。高斯尊重他的父親,並且秉承了其父誠實、謹慎的性格。1806年迪德裡赫逝世,此時高斯已經做出了許多劃時代的成就。   在成長過程中,幼年的高斯主要是力於母親和舅舅。
  • 高斯和黎曼,誰更偉大?
    一,我發現最近有一篇論述德國十大數學家的文章《德國最有影響力的十位數學家》在許多公眾號上流傳,這篇文章把黎曼排在第一位,認為黎曼的成就遠遠超過高斯,在講述完高斯的數學成就後,作者表示如果僅限制在數學領域,微積分也是整個現代數學大廈的基石,作者在文章中如數家珍的那些複分析,解析數論,橢圓函數,黎曼洛赫定理....諸多的數學領域和成就,哪個能離開微積分!這也正是為什麼牛頓會被譽為有史以來最偉大的三位數學家之一。在微積分已經普及到科學界的今天,人們根本無法想像,沒有微積分的日子是什麼樣子的。作者的「沒有爭議」是非常非常愚蠢的。
  • 數學家的故事:高斯
    高斯被認為是歷史上最重要的數學家之一,並享有"數學王子"之稱。     高斯和阿基米德、牛頓、歐拉並列為世界四大數學家。一生成就極為豐碩,以他名字"高斯"命名的成果達110個,屬數學家中之最。他對數論、代數、統計、分析、微分幾何、大地測量學、地球物理學、力學、靜電學、天文學、矩陣理論和光學皆有貢獻。
  • 偉大數學家——高斯的故事
    在進入哥廷根大學的同年,高斯發現了質數分布定理和最小二乘法。接著他又轉入曲面與曲線的計算,並成功得到高斯鐘形曲線,這一曲線在概率計算中大量使用。次年,年僅17歲的他首次用尺規構造出了規則的17角星,為歐氏幾何自古希臘以來做了首次重要的補充。
  • 簡述數學王子高斯偉大的一生
    高斯被認為是歷史上最重要的數學家之一,並享有"數學王子"之稱。高斯和阿基米德、牛頓、歐拉並列為世界四大數學家。高斯一生的成就非常之多,單純以他名字"高斯"命名的成果就多達110個,當屬數學家中之最。高斯對數論、代數、統計、分析、微分幾何、大地測量學、地球物理學、力學、靜電學、天文學、矩陣理論和光學皆有貢獻。今天就帶大家認識一下這位數學王子。
  • 數學天才——高斯
    173年4月30日,高斯出生在德意志的一個貧苦家庭。父親是一名園丁,還做泥水匠等工作,母親是石匠的女兒。高斯很早就展現了過人オ華,3歲時就能指出父親帳冊上的錯誤。1785年,8歲的高斯進入德國農村的一所小學,在破舊的教室裡聽課。
  • 高斯和小行星的發現
    高斯出生在一個貧苦的家庭裡,祖父是農民,父親做短工,舅舅腓特烈(Friederich) 是一個很有才能的入,自已學會了紡織技術,很快成為一個出色的錦緞織工。他經常教給高斯一些知識,對幼年的高斯影響很大.高斯父親本不打算讓他上學,但高斯很小就顯出有數學才能。
  • 《數學博覽》 數學家高斯
    高斯是德國數學家 ,也是科學家,他和牛頓、阿基米德,被譽為有史以來的三大數學家。
  • 偉大的數學大師——高斯
    這個令老師驚訝的孩子就是高斯。由於高斯在數學上表現出了出色的天賦,老師特意從德國漢堡買來了最好的算術書送給他,由此高斯便開始在數學海洋中盡情徜徉。1788年,11歲的高斯進入了文科學校,在那裡他的古典文學、數學成績尤其突出。
  • 【數學名人故事】數學家高斯的故事
    大家好,我是梁燕老師,今天與大家分享一位著名數學家高斯的故事。       高斯出生於西元1777年,是德國的數學家、物理學家和天文學家,與阿基米德和牛頓被公認為人類歷史上最傑出的三位數學家。一生成就極為豐碩,以他名字「高斯」命名的成果達110個。       三歲時,有一天,他趴在地板上。看著當水泥工頭的父親在算工人的薪水。父親好不容易算出來後。高斯卻說,父親算錯了。
  • 伽羅瓦,高斯,阿貝爾,這三人誰的數學天賦最高?
    歷史上有非常多的傑出數學家,若論成就,很多榜單都把高斯排在第一。而實際上數學是一門非常吃天賦的科學,有些人年紀輕輕就已經完成了很多人一生都達不到的學術成就。所以說如若我們拋開成就不談,都有哪些數學天賦極高的天才呢?
  • 高斯在數學界的地位與愛因斯坦在物理學界的地位對比,怎麼樣?
    數學王子及其成就高斯,猶太人,德國著名數學家、物理學家、天文學家、在地測量學家、近代數學奠基者之一.可能我們平常人了解它應該是計算1加到100的方法,其實高斯和阿基米德、牛頓、歐拉並列為世界四大數學家.他一生的成就極為豐碩,以他命名的成果達110
  • 是不是拜錯了大神——你對高斯一無所知
    天才可不是白叫的高斯,一生的成就可真不少,所謂是年少成名。人稱小王子的高斯,三歲時就展露了超乎尋常的天賦。有天,小高斯趴在老爸身旁,看他算帳。老爸算完時,他突然說老爸你算錯了,應該是我這個結果。二十四歲的年紀,研究數學不過十多年,就已經取得了如此成就。他的未來能取得什麼樣的成就,似乎沒有言語可以概括。集萬千寵愛於一身擁有了許多成就的高斯,年輕時名聲已經響噹噹了,迷妹迷弟也越來越多。每聽到他的名字,就必有讚美聲。
  • 歷史上最重要的數學家之一,卡爾 弗裡德裡希 高斯
    卡爾.弗裡德裡希.高斯,1777年4月30日-1855年2月23日,享年77歲),猶太人,德國著名數學家、物理學家、天文學家、大地測量學家,近代數學奠基者之一。高斯被認為是歷史上最重要的數學家之一,並享有「數學王子」之稱。
  • 卡爾·弗裡德裡希·高斯傳記
    高斯在學院裡獨立地發現了博德定律,二項式定理和算術幾何均值,以及二次互易定律和素數定理。在1795高斯離開不倫瑞克在哥廷根大學學習。高斯的老師是卡斯特納,高斯經常嘲笑他。他在學生中唯一認識的朋友是法爾卡斯。他們於1799年見面,並且彼此往來多年。
  • 高斯用他溫暖的話,溫暖你我,同時也輕輕敲打今天的數學教育
    初看,可能溫暖不是很多,初看時,看客們通常會將焦點放在後半句,與高斯取得同樣的成就?開玩笑吧,幾乎沒有人指望自己能夠取得與高斯同樣的成就。然而,不愛說話的高斯,肯定不會隨意說話。高斯肯定不是讓看客們只看後半句,只顧局部,不顧整體,數學討厭這樣做,高斯也不會喜歡。將目光放在整句話,高斯其實是給出了一個命題,將命題提煉,可以簡單地表示為:長時間專注思考,可以取得成就。
  • 數學史20大數學家之—高斯,彪悍的人生不需要解釋
    如果你了解數學,你一定對高斯小時候就能計算出1到100,這100個自然數之和的故事並不陌生。高斯被稱為數學王子,以他冠名的方法,定理,概念數不勝數。今天我們就一起領略一下這位「數學大魔王」的開掛人生。過人的天賦引起了當地公爵的注意,在公爵的資助下,高斯開啟了開掛的學術生涯。二、開掛的人生1796年高斯證明了二次互反律,由於你太喜歡這個定律了,高斯在一生中還給出了另外7種證明方法。童年高斯發現了正十七邊形的尺規作圖法,解決了這個自歐幾裡得時代起的大難題。
  • 正態分布和高斯分布的作用_高斯分布的定義_誤差服從高斯分布
    打開APP 正態分布和高斯分布的作用_高斯分布的定義_誤差服從高斯分布 發表於 2017-12-04 16:38:44   正態分布