測定培養細胞中的消氧率(OCR)和細胞外酸化率(ECAR)以評估能量代謝

2021-02-12 BioscienceProtocols

Mammalian cells generate ATP by mitochondrial (oxidative phosphorylation) and non-mitochondrial (glycolysis) metabolism. Cancer cells are known to reprogram their metabolism using different strategies to meet energetic and anabolic needs (Koppenol et al., 2011; Zheng, 2012). Additionally, each cancer tissue has its own individual metabolic features. Mitochondria not only play a key role in energy metabolism but also in cell cycle regulation of cells. Therefore, mitochondria have emerged as a potential target for anticancer therapy since they are structurally and functionally different from their non-cancerous counterparts (D'Souza et al., 2011). We detail a protocol for measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) measurements in living cells, utilizing the Seahorse XF24 Extracellular Flux Analyzer (Figure 1). The Seahorse XF24 Extracellular Flux Analyzer continuously measures oxygen concentration and proton flux in the cell supernatant over time (Wu et al., 2007). These measurements are converted in OCR and ECAR values and enable a direct quantification of mitochondrial respiration and glycolysis. With this protocol, we sought to assess basal mitochondrial function and mitochondrial stress of three different cancer cell lines in response to the cytotoxic test lead compound mensacarcin in order to investigate its mechanism of action. Cells were plated in XF24 cell culture plates and maintained for 24 h. Prior to analysis, the culture media was replaced with unbuffered DMEM pH 7.4 and cells were then allowed to equilibrate in a non-CO2 incubator immediately before metabolic flux analysis using the Seahorse XF to allow for precise measurements of Milli-pH unit changes. OCR and ECAR were measured under basal conditions and after injection of compounds through drug injection ports. With the described protocol we assess the basic energy metabolism profiles of the three cell lines as well as key parameters of mitochondrial function in response to our test compound and by sequential addition of mitochondria perturbing agents oligomycin, FCCP and rotenone/antimycin A.


Figure 1. Overview of seahorse experiment


Optimization of seeding density
In an initial experiment, the optimal seeding density is required for each cell type. Typically, the cell density ranges from 10,000 to 60,000 cells per well and can vary widely among cell lines. A first point of orientation can be the cell number that gives confluency of approx. 95% overnight in a 96-well cell culture plate as the seeding surface is comparable to the seahorse culture plate. The seeding number should give a confluent and healthy and consistent monolayer on the day of the assay.

HCT-116, SK-Mel-5 and SK-Mel-28 cells were seeded in a Seahorse XF24 cell culture plate at various concentrations ranging from 10,000 to 30,000 cells/well with a two-step seeding technique as described below in Procedure B (Figure 2). Seeding cells in triplicates is recommended.



Figure 2. Plate layout for cell density evaluation. Shown here is the exemplary seeding layout for the SK-Mel-5 and SK-Mel-28 cell lines (seeding density for HCT-116 cells was evaluated on a second plate; not shown).

Cells were then assayed in the XF24 instrument as described in Procedure E (without loading compounds into ports) using Table 1 commands.

Table 1. Protocol commands for cell density evaluation


As seen in Figure 3, a linear increase of OCR values with increasing cell density was observed in all three cell lines. ECAR values begin to level off at 20,000 cells/well for SK-Mel-28 and SK-Mel-5 while being much lower and steadily increasing for HCT-116. Thus, a seeding number of 20,000 cells/well for SK-Mel-28 and SK-Mel-5 and of 35,000 cells/well for HCT-116 were chosen to ensure being within the linear response range while having high reading values to observe increases as well as decreases in OCR and ECAR.


Figure 3. Optimization of assay conditions: evaluation of OCR and ECAR depending on the seeding density of three different cell lines

Seeding cells into Seahorse XF24 tissue culture plate (Day 1)

Note: The seeding and growing of cells are performed with good sterile cell culture technique. A two-step seeding method is used to obtain a consistent even monolayer which is vital to obtain consistent and accurate data:

Pre-warm culture media, trypsin solution and DPBS to 37 °C.

For adherent cells, wash cells with DPBS, and add trypsin and wait until cells begin to detach. Add culture media with serum to deactivate trypsin and pipette up and down to create a uniform cell suspension. Count cells with a hemocytometer and resuspend cells in growth media to the desired final concentration to seed in 100 µl.

Plate 100 µl cell suspension into a Seahorse XF24 tissue culture plate. Put media only (no cells) in the background correction wells (A1, B4, C3, D6).

Let the culture plate sit for 1 h in the bio-hood without moving it around (in order to let cells settle evenly).

Place the culture plate into an incubator (37 °C, 5% CO2) for 4 h.

Carefully add 150 µl growth media (final volume in well 250 µl). Hold the pipette tip at an angle and add to the well side to not destroy even layer of newly attached cells.

Let cells grow overnight at 37 °C, 5% CO2.

Note: The following steps are performed without sterile technique, but caution to keep the cells and equipment as clean as possible. 

Hydrate sensors (Day 1)

Open XF 24 FluxPak and take out the sensor cartridge (green) and calibration plate (clear) (Figure 4).



Figure 4. Seahorse XF 24 sensor cartridge. A. The sensor cartridge sitting on top of a calibration plate with injection ports shown. B. Bottom side of the sensor plate which shows sensors with embedded fluorophores.

Place the sensor cartridge (sensors up) next to the calibration plate (be careful not to touch sensors).

Fill each well of the calibration plate with 1 ml of Seahorse XF Calibrant.

Lower the sensor cartridge onto the calibrant plate submerging the sensors in calibrant (be careful not to touch walls with sensors).

Place in a non-CO2 37 °C incubator overnight. To prevent evaporation of the XF Calibrant, verify that the incubator is properly humidified.

Stabilization of instrument (Day 1)

Turn on an XF24 Analyzer, open Seahorse Bioscience software and log in.

Write the assay template. When planning and writing the assay protocol be careful not to create a protocol that is longer than cells can manage without CO2 in unbuffered media. Depending on cell type this is 2-3 h. If in doubt, a cell viability assay can be performed after the seahorse assay.

Leave the XF24 Analyzer on overnight with XF24 software running and logged in to ensure equilibration to 37 °C.

Seahorse assay (Day 2) 

Check on the confluency of cells. Evenly spacing of cells is needed, without large cell clumps or blank patches, as this could impair the accuracy of data.

Pre-warm assay media to 37 °C.

Pre-warm compounds and adjust to pH 7.4 with NaOH (1 M) if necessary.

Perform media exchange in a Seahorse XF24 tissue culture plate:

Remove 150 µl growth media with a multichannel pipet.

Add 1 ml assay media with a multichannel pipette.

Remove 1 ml with a multichannel pipette.

Add 475 µl assay media with a multichannel pipette (575 µl final volume).

Place the cell plate into a CO2-free incubator for approx. 60 min.

  5.  Load cartridge with desired compounds:

Pre-warm compounds to 37 °C.

Load 50-100 µl of compound into appropriate port of cartridge (for mitochondrial stress test: 64 µl into port A, 71 µl port B, 79 µl port C, 88 µl port D). (see Note 1) Load equivalent amounts of assay media into equivalent port for background wells (see Note 2).

Place back into the incubator (non-CO2) for 10 min to allow heating up to 37 °C again. Handle carefully, carry only by holding onto the calibration plate. Move as less as possible.

  6.  Calibration and running seahorse assay:

Load assay template in Seahorse XF24 software.

Press green 『START』 button.

Make sure to load the correct protocol, the correct save directory and saving name.

Press 『START』.

Load sensor cartridge with calibration plate into instrument tray (the notch goes in the front, left corner. Make sure that the plate sits correctly and flat, between all 8 tabs)

Follow the instructions on the screen in order to calibrate and equilibrate sensors.

Once equilibration step is done, remove the calibration plate and replace with cell culture plate. 

Protocol commands (mitochondria stress test, Table 2, Figure 5)


Table 2. Protocol commands for mitochondrial stress test

Results were initially reviewed using the seahorse XF data viewer which automatically saves data as MS Excel (.xls) file. Graphic and statistical analyses were carried out using GraphPad Prism. The significance of observed differences of the basal bioenergetics of cell lines was evaluated by the non-parametric Kruskal-Wallis test followed by Dunn’s multiple comparison post hoc test. In all cases, P < 0.05 was considered to be significant. Experimental values are reported as mean ± standard deviation (Figure 5) or in a box plot (Figure 6).


Figure 5. Mitochondrial stress test. OCR was measured after mensacarcin was injected (black arrow) in different concentrations to SK-Mel-28 cells followed by consecutive injections of oligomycin (1 μM), FCCP (0.5 μM), and antimycin A (0.5 μM)/rotenone (0.5 μM) (n = 3).


Figure 6. Basal bioenergetic state of SK-Mel-28, SK-Mel-5 and HCT-116 cells. The basal energy metabolism of each cell line was assessed by analyzing OCR/ECAR ratios. OCR and ECAR were acquired with the same protocol as described above but without the injection of compounds. The protocol commands consisted of one loop with 8 measurements. Several separate assays were performed (n = 25).

Pipet into ports with angle, do not touch the bottom, do not tap to prevent leakage. The liquid is only held by capillary forces.

It is mandatory to load ports for the background wells with assay media that contains the same concentration of DMSO as the compounds to account for any DMSO effects on cells.

Once injected into the wells, compounds are diluted 1:10. This will give a final concentration of 1 µM oligomycin and 0.5 µM FCCP, rotenone and antimycin A, respectively, in the cell culture well.

Culture media (10% (v/v) FBS)
Note: Work under sterile conditions in a laminar flow hood.

Open liquid DMEM bottle

Take out 55 ml with a sterile Serological pipette and discard the liquid

Add 50 ml FBS with a sterile Serological pipette

Add 5 ml penicillin/streptomycin solution

Store at 4 °C

Assay media (sterile, unbuffered, 250 ml)

Note: Work under sterile conditions in a laminar flow hood.

Autoclave 250 ml ultrapure H2O in a glass bottle

Dissolve 3,34 g powder DMEM without NaHCO3 and without HEPES in 250 ml autoclaved H2O

Warm to 37 °C

Adjust to pH 7.40 with NaOH (1 M)

Store at 4 °C

NaOH (1 M)
Dissolve 4 g NaOH pellets in 100 ml autoclaved H2O

Oligomycin (10 µM)

Prepare freshly on the day of seahorse assay (day 2) (see Note 1)

Prepare 1 mM solution in 1 ml DMSO: Dissolve 0.7911 mg oligomycin in DMSO

Dilute to 10 µM in assay media (1% DMSO): Pipet 20 µl of 1 mM oligomycin into 1,980 µl assay media

Warm to 37 °C and adjust to pH 7.4 with NaOH (1 M) if necessary

FCCP (5 µM)

Prepare freshly on the day of seahorse assay (day 2) (see Note 1)

Prepare 50 mM solution in DMSO: Dissolve 2.54 mg FCCP in 200 µl DMSO

Dilute to 500 µM: Pipet 10 µl of 50 mM FCCP into 990 µl DMSO

Dilute to 5 µM in assay media (1% DMSO): Pipet 20 µl of 500 µM FCCP into 1,980 µl assay media

Warm to 37 °C and adjust to pH 7.4 with NaOH (1 M) if necessary

Rotenone (5 µM)/antimycin A (5 µM)

Prepare freshly on the day of seahorse assay (day 2) (see Note 1)

Prepare 50 mM solution in DMSO: Solve 3.94 mg rotenone and 5.49 mg antimycin A in 200 µl DMSO

Dilute to 1 mM: Pipet 10 µl of 50 mM rotenone/antimycin A into 490 µl DMSO

Dilute to 5 µM in assay media (0.5% DMSO): Pipet 20 µl of 1 mM rotenone/antimycin A into 1,980 µl assay media

Warm to 37 °C and adjust to pH 7.4 with NaOH (1 M) if necessary

相關焦點

  • 細胞能量代謝,Seahorse來檢測
    接下來,我們來了解細胞能量代謝分析儀是如何來工作的。氧消耗、糖酵解的檢測是對細胞代謝監控的有效方法,同樣也是當下研究熱點。Seahorse通過測定氧氣消耗速率(Oxygen Consumption Rate, OCR)來反映細胞線粒體的功能,通過測定細胞外酸化速率(Extra Cellular Acidification Rate,ECAR)來反映糖酵解功能,以表徵細胞的代謝狀況。
  • 葛均波院士團隊:SIRT5基因缺失通過代謝轉換增強脂肪間充質幹細胞...
    間充質幹細胞(MSCs)是典型的成人幹細胞,具有通過組織特異性分化、旁分泌效應和免疫調節促進組織修復的能力。由於MSCs細胞很容易分離,具有非免疫原性且對多種缺血性疾病有治療潛能,因此MSCs細胞在基礎研究和缺血性疾病的臨床試驗中得到了廣泛的研究,然而,在臨床應用前MSCs的體外擴增導致代謝重新編輯過程中,從糖酵解到氧化磷酸化,極大地損害了它的增值和治療能力。
  • 【安捷倫】一種評估細胞代謝的創新方法——安捷倫 Seahorse XF...
    代謝,是生命最基本的特徵之一,機體從外界攝取營養物質,包括碳水化合物、脂肪、蛋白質、微量元素、水及維生素等,同時經過體內分解吸收將其中蘊藏的化學能釋放出來轉化為組織和細胞可以利用的能量,再通過利用這些能量來維持正常的生命活動。我們把這種代謝過程中所伴隨的能量的釋放、儲存和利用稱為能量代謝。
  • Nature:不同的線粒體代謝模式影響T細胞的分化和功能
    CD4細胞是人體免疫系統中的一種重要免疫細胞,在整個激活階段需要進行代謝重編程。在CD4T細胞中,T細胞受體的連接以及細胞因子信號的共同刺激下可誘導糖酵解合成代謝,這是細胞快速增殖所必需的。CD4T細胞分化和功能可通過信號傳導和轉錄重構協調進行,然而目前尚不清楚這些過程是否可由細胞中的代謝成分獨立調節。
  • 全面解讀細胞培養基!
    個性化細胞培養基可能是無血清培養基,也可能是低血清培養基,最終是為滿足某一種或某一類生物製品的生產需求。2. 培養基的基本組分細胞培養基必須含有充分的營養物質,才能滿足新細胞合成、細胞代謝等生化反應所需要的物質和能量。細胞培養基的主要成份是水、胺基酸、維生素、碳水化合物、無機鹽和其它一些輔助營養物質等。
  • 細胞沒有能量可通過移植線粒體來補充 為癌症治療提供全新思路
    研究表明,線粒體移植有朝一日可能被用於治療各種心血管疾病、代謝疾病和神經退行性疾病,甚至為癌症的治療提供了一種新方法。「線粒體是驅動我們的細胞進行許多活動的引擎。」論文第一作者Paria Ali Pour說,她是UCI生物醫學工程博士候選人。
  • 臨床綜述:不容小視的腫瘤細胞能量代謝
    這些不能經由線粒體途徑獲得ATP的腫瘤細胞,只能進行代謝重組,以維持細胞內的ATP和NADH水平正常。眾所周知,ATP和NADH是生物大分子合成、生物膜整合、離子濃度維持和DNA合成所必需的。 「跟著錢走」是一個發現和破獲犯罪活動的久經考驗的方法,因為非法所得的錢款需要銷贓。同樣,可以將這種方法沿用到腫瘤研究中,追蹤和破壞細胞的能量通貨ATP和氧化還原通貨NADH。
  • 腫瘤中的免疫細胞代謝
    與對照相比,降低生長培養基中的葡萄糖濃度可以抑制細胞外酸化率,增加耗氧率,減弱mTOR信號傳導並抑制兩者的效應功能。降低的mTOR複合物1(mTORC1)信號幹擾Teff細胞分化,並且在CD4 + T細胞的情況下有利於免疫抑制性Treg細胞的發展。有趣的是,在CD8 + T細胞中,雷帕黴素對mTOR的阻滯促進了Tmem細胞的分化,這可能在維持抗腫瘤反應中發揮重要作用。
  • 雙酚類似物對HepG2細胞的代謝調控
    從OPLS-DA得分圖中,在四個BP代謝組學數據集和溶劑對照組之間觀察到明顯的區別(圖2)。圖1主成分分析(PCA)得分來源於細胞培養基樣品的NOESY光譜的NMR數據。 (A)溶劑對照和BPA處理的PCA得分圖;(B)溶劑對照和BPAF處理的PCA得分圖;(C)溶劑對照和BPF處理的PCA得分圖;(D)溶劑對照和BPS處理的PCA得分圖。
  • 康寧生命科學:3D細胞培養和2D細胞培養的區別
    我們將首先探討3D細胞培養和2D細胞培養的區別。自1907年,美國生物學家及解剖學家Ross Harrison第一次成功進行了2D(二維)動物細胞培養,2D細胞培養模型在發育生物學、組織形態學、疾病機制、藥物研發、大規模蛋白生產、組織工程和再生醫學領域的發展發揮了重要作用。
  • 脂肪細胞外囊泡攜帶酶和脂肪酸,刺激腫瘤細胞中的線粒體代謝和重塑
    細胞外囊泡是脂肪細胞通訊中新興的關鍵角色。值得注意的是,脂肪細胞脫落的小細胞外囊泡會刺激黑色素瘤細胞中的脂肪酸氧化和遷移,肥胖症的這些作用會增強。然而,所涉及的囊泡和細胞過程仍然很大程度上未知。在肥胖症中,細胞外囊泡的增強作用取決於增加的脂肪酸運輸,而不是與脂肪酸氧化相關的酶。存儲在癌細胞脂質滴中的這些脂肪酸在通過脂肪吞噬釋放時驅動脂肪酸氧化。線粒體活性的這種增加將線粒體重新分配到遷移細胞的膜突起上,這對於在脂肪細胞囊泡存在下增加細胞遷移是必需的。研究結果提供了關鍵的洞察力,了解細胞外囊泡在脂肪細胞和與肥胖特別相關的腫瘤之間發生的代謝合作中的作用。
  • 胎牛血清促細胞生長曲線的測定
    生長促進曲線的測定,是反映胎牛血清(FBS)性能的方法之一。即定量評估細胞的生長狀況,了解細胞的生長動力學,在細胞生長的潛伏期、對數期和平臺期記錄細胞生長狀況,可用於確定細胞群體倍增時間和細胞周期,從而反映血清品質。
  • 自噬與腫瘤幹細胞代謝調控的交互作用
    通過線粒體的轉換有助於限制幹細胞的氧化磷酸化(OXPHOS)能力並使幹細胞更依賴於糖酵解來滿足能量需求,從而維持幹細胞狀態。抑制線粒體和CD44表達,也促進p53易位至細胞核,從而拮抗幹細胞基因的表達。在CSC中觀察到高水平的自噬與可塑性的維持,與耐藥性及遷移侵襲有關。自噬使CSC在儘管缺氧和低營養的腫瘤微環境中也能生存。
  • 樹突狀細胞功能的代謝調控:詳細解讀
    與單核細胞相比,分化後的moDCs具有更高的耗氧量(OCR),含有更多的線粒體,產生更多的三磷酸腺苷(ATP)。因此,moDCs的分化依賴於氧化磷酸化(OXPHOS)和脂質代謝。 GM-CSF體外培養的小鼠骨髓分化的DC樣細胞(由DCs和巨噬細胞混合組成的培養體系,GM-DC,表2)顯示葡萄糖攝取高,線粒體膜電位高,耗氧量高。
  • 間充質幹細胞治療(四):效力評價|MSCs|幹細胞|適應症|外囊泡|-健康界
    MSCs 分泌物由細胞因子、趨化因子、生長因子和外囊泡 (攜帶蛋白質、脂質和各種RNA) 組成。在 aGvHD中 MSCs介導的免疫調節作用[6]除了生物標誌物外,BMSCs的其他特性也可以預測其免疫抑制功能,比如通過 與PBMC(外周血單個核細胞)共培養,檢測MSCs產品的相應功能。
  • 安徽農大用LC-MS代謝組學和GC-MS代謝組學對茶樹細胞代謝效應研究
    在我們之前的研究中,發現幾乎TMX的所有代謝產物都被排洩到茶葉細胞的懸浮培養中。因此,我們分析了茶葉細胞和培養上清的代謝變化。這些數據為進一步研究茶樹細胞中參與TMX代謝的酶提供了指導,並進一步加深了我們對茶葉與農藥TMX相互作用的認識。
  • 【知識點】細胞培養基到底如何選擇?
    D-葡萄糖(D-Glucose)作用:細胞生長所需的主要能量來源。● 最初的 DMEM 中,葡萄糖濃度為 1 g/L,現在稱其為低糖型 DMEM,適合培養代謝作用較慢、依賴性貼壁細胞的哺乳動物細胞。● 高糖型 DMEM 中的葡萄糖濃度為 4.5 g/L,普遍應用於生長快、粘附性低的細胞、雜交瘤的骨髓瘤細胞、克隆細胞、DNA 轉染的轉化細胞、原代病毒宿主細胞、單一細胞的培養以及疫苗的生產,例如利用CHO 細胞表達 EPO 和生產B肝疫苗。● 使用無糖培養基的主要目的是,通過控制細胞的能量來源,研究細胞的代謝過程或葡萄糖利用效率。
  • 糖代謝PCR晶片分析雙酚類似物對細胞的代謝調控
    從OPLS-DA得分圖中,在四個BP代謝組學數據集和溶劑對照組之間觀察到明顯的區別(圖2)。圖1主成分分析(PCA)得分來源於細胞培養基樣品的NOESY光譜的NMR數據。2.鑑定差異累積的代謝物圖3 OPLS-DA負荷圖和HEPG2細胞培養基中明顯的差異代謝物鑑定。
  • 細胞技術 細胞培養試劑 冷凍和復甦
    細胞培養基   市場上可提供乾粉培養基和液體培養基:   乾粉培養基需使用者自己配製並滅菌,其優點是價格便宜。再加青黴素和鏈黴素至終濃度各為100 U/ml。   ↓   細胞培養液   血清   熱滅活:56℃, 30 分鐘加熱已完全解凍的血清   熱滅活目的:滅活血清中的補體成分。如果不做細胞因子和免疫相關的實驗,建議血清不要滅活。因為熱處理會造成血清沉澱物顯著增多,還會影響血清的質量。滅活後嚴重影響細胞生長速度,且細胞貼壁率降低。
  • 細胞培養實驗室的環境設計
    細胞培養室和設計原則是防止微生物汙染和有害因素影響,要求工作環境清潔、空氣清新、乾燥和無煙塵。細胞培養室的設計原則一般是無菌操作區設在室內較少走動的內側,常規操作和封閉培養於一室,而洗刷消毒在另一室。 (4)吸管:常用的有長吸管和短吸管兩類,長吸管也稱刻度吸管。其改良後管上部有球型刻度稱改良吸管,刻度吸管用於移動液體。常用1ml和10ml兩種。短吸管也叫滴管,分彎頭和直頭兩種。 (5)離心管:離心管是細胞培養中使用最廣泛的器皿,根據用途不同形態各樣,常用於細胞培養的離心管有大腹式尖底離心管和普通尖底離心管兩類。