脂肪細胞外囊泡攜帶酶和脂肪酸,刺激腫瘤細胞中的線粒體代謝和重塑

2021-02-20 胞外囊泡與外泌體

細胞外囊泡是脂肪細胞通訊中新興的關鍵角色。值得注意的是,脂肪細胞脫落的小細胞外囊泡會刺激黑色素瘤細胞中的脂肪酸氧化和遷移,肥胖症的這些作用會增強。然而,所涉及的囊泡和細胞過程仍然很大程度上未知。1月10日土魯斯大學藥理學與結構生物學研究所團隊在The EMBO journal查看期刊詳情上發表了「Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells」,文章闡明了將脂肪細胞胞外小泡與代謝重塑和細胞遷移聯繫起來的機制,顯示脂肪細胞囊泡通過提供酶和底物刺激黑色素瘤脂肪酸氧化。在肥胖症中,細胞外囊泡的增強作用取決於增加的脂肪酸運輸,而不是與脂肪酸氧化相關的酶。存儲在癌細胞脂質滴中的這些脂肪酸在通過脂肪吞噬釋放時驅動脂肪酸氧化。線粒體活性的這種增加將線粒體重新分配到遷移細胞的膜突起上,這對於在脂肪細胞囊泡存在下增加細胞遷移是必需的。研究結果提供了關鍵的洞察力,了解細胞外囊泡在脂肪細胞和與肥胖特別相關的腫瘤之間發生的代謝合作中的作用。

 

Figure 1. Adipocyte EV transfer proteins involved in FA metabolism to melanoma cells. A, Workflow of the SILAC approach. 3T3-F442A cells were seeded and differentiated in the presence of heavy amino acids. After 14 days of differentiation, the EV secreted by the mature labeled adipocytes wereisolated and analyzed by mass spectrometry to evaluate the presence of heavy amino acid-containing proteins. These EV were also added to SKMEL28 cells for 12 h, and then, LC-MS/MS analysis was performed to identify heavy amino acid -containing proteins that had been transferred from adipocytes to melanoma cells via EV. B Three independent samples (Exp 1–3) of EV secreted by labeled 3T3-F442A cells were analyzed by mass spectrometry (in duplicate injections, Inj1/2).The percentage of proteins bearing at least one peptide containing a heavy amino acid is indicated. C Proteins involved in FAO and oxidative phosphorylation (OXPHOS) that are transferred from adipocytes to melanoma cells via EV are shown in red.

 

Figure 2. Adipocyte EV-induced FAO is increased by obesity, but this process is not dependent on increased protein transfer.A Two human (SKMEL28 and 1205Lu) and a murine (B16BL6) melanoma cell lines were exposed, or not, to the indicated EV from primary murine adipocytes obtained from lean mice fed a normal diet (ND) or obese mice fed a high fat diet (HFD), and then, FAO was measured. B ,Volcano plot of mass spectrometry-based quantitative proteomics results showing relative abundance of proteins in primary murine adipocyte EV from obese mice(HFD), as compared to those from lean mice (ND). The dashed lines indicate cutoff values and points colored in gray indicate proteins that display non-significant fold-change by Welch t-test between both conditions. Proteins involved in FAO are indicated by yellow dots.C, Western blot analysis of the indicated FAO enzymes in the EV secreted by primary adipocytes from lean (ND) and obese (HFD) mice (top panel) and from human individuals with varying BMI. For each blot, extracts from three independent batches of murine samples or three independent individuals for human samples (1–3) are shown. Flotillin 1 (FLOT1) is used as a loading control. D Western blot analysis of the indicated FAO enzymes in melanoma cells treated, or not, with EV from lean (ND) and obese (HFD) mice. Tubulin (TUB) is used as a loading control.E, RT–qPCR analysis of mRNAs for the indicated genes in 1205Lu cells treated or not with EV secreted by primary adipocytes from lean (ND) and obese (HFD) mice for 48 h. Results are expressed relative to the corresponding value for control cells.F, Analysis of FAO levels in 1205Lu cells exposed to 3T3-F442A EV and treated, or not, with cycloheximide (CHX).

 

Figure 3. Adipocyte EV transfer FA to melanoma cells to fuel FAO, and this transfer is increased in obesity.A ,Lipids were extracted from EV secreted by 3T3-F442A preadipocytes and differentiated 3T3-F442A adipocytes (respectively, preAd-3T3-EV and Ad-3T3-EV), and FA

content was measured. B, Workflow of the assay used to evaluate FA transfer by 3T3-F442A adipocyte EV (3T3-EV) to melanoma cells. Mature 3T3-F442A adipocytes were loaded with BODIPY FL C16. Cells were then washed, and fresh medium was added. Seventy-two hours later, conditioned medium was harvested, and 3T3-F442A EV (3T3-EV) were isolated and added to melanoma cells. C, Indicated melanoma cells were incubated with EV from 3T3-F442A adipocytes previously loaded with BODIPY FL C16 (3T3-FL C16-EV) and, 24 h later, cells were fixed and nuclei were counterstained with DAPI before observation by confocal microscopy. D, Left panel, indicated cells were incubated with EV from 3T3-F442A adipocytes previously loaded with BODIPY FL C16 and immediately treated, or not, with Etomoxir for 24 h. Then, cells were fixed and nuclei were counterstained with DAPI before observation by confocal microscopy. Right panel, quantification of BODIPY FL C16 staining area per cell. E, Lipids were extracted from EV secreted by adipocytes from lean (ND) and obese (HFD) mice (left panel) or from human adipose tissue samples from patients with varying BMI (right panel) and fatty acid content was measured. F, Indicated cells were exposed, or not, to adipocyte EV from primary adipocytes from lean mice fed a normal diet (ND) or obese mice fed a high fat diet (HFD) for 24 h.Then, cells were fixed, stained with BODIPY, and counterstained with DAPI.

 

Figure 4. FA transferred from adipocytes to melanoma cells by EV are released from lipid droplets by lipophagy. A, Transmission electron micrographs of 1205Lu cells exposed, or not, to 3T3-F442A EV (3T3-EV). B, 1205Lu cells were incubated with EV from 3T3-F442A adipocytes, previously loaded with BODIPY FL C16 in the presence, or not, of Lalistat 2. Then, live cells were stained with the LysoTracker probe and observed by confocal microscopy. Arrows indicate colocalization. C, 1205Lu were incubated with EV from 3T3-F442A adipocytes, previously loaded with BODIPY FL C16 and treated, or not, with Lalistat 2. Then, cells were fixed and counterstained with DAPI before observation by confocal microscopy. Quantification of BODIPY FL C16 staining per cell is shown beside. D ,1205Lu cells were exposed to 3T3-F442A EV (3T3-EV) and treated, or not, with Lalistat 2 (Lal). E 1205Lu cells were exposed, or not, to adipocyte EV from lean mice fed a normal diet (ND) or obese mice fed a high-fat diet (HFD) with, or without, Lalistat 2 (Lal). Cells were then fixed, stained with BODIPY, and counterstain with DAPI before observation by confocal microscopy. F,1205Lu cells were exposed, or not, to adipocyte EV from ND or HFD mice with, or without, Lalistat 2 (Lal). Cell motility was then tracked by video microscopy.

 

Figure 5. Adipocyte EV modify melanoma mitochondrial dynamics, a process that promotes melanoma aggressiveness and is exacerbated by obesity. A ,1205Lu cells exposed to 3T3-F442A EV (3T3-EV) and treated, or not, with Mdivi-1, were stained with a MitoTracker probe, fixed, and observed by confocal microscopy. B, Western blot analysis of the indicated mitochondrial fission proteins in melanoma cells treated, or not, with EV from 3T3-F442A adipocytes (3T3-EV). Tubulin (TUB) is used as a loading control. C, 1205Lu cells were exposed to 3T3-F442A EV (3T3-EV) and treated, or not, with Mdivi-1. Cell migration was then evaluated in Boyden chamber assays.  D ,1205Lu cells were transfected, or not, with two different siRNA targeted against DRP1 (siDRP1#1 or 2) or an untargeted siRNA (siUT). Top, 48 h after transfection,protein extracts were prepared and DRP1 expression was evaluated by Western blot. Bottom, 36 h post-transfection, cells were exposed to 3T3-F442A EV (3T3-EV),and cell motility was tracked by video microscopy. E ,1205Lu cells were exposed to adipocyte EV from lean mice fed a normal diet (ND) or obese mice fed a high-fat diet (HFD) and immediately treated, or not, with Mdivi-1. Cell motility was then tracked by video microscopy.

Figure 6. Lipid droplets are found in membrane protrusions, at proximity to mitochondria, in melanoma cells exposed to adipocyte EV. A, Left panel, indicated melanoma cells exposed to 3T3-F442A EV were fixed, stained with BODIPY and Phalloidin before observation by confocal microscopy.  B, Left panel, melanoma cells exposed to EV secreted by adipocytes from lean mice fed a normal diet (ND) or obese mice fed a high-fat diet (HFD) were fixed, stained with BODIPY and Phalloidin before observation by confocal microscopy. Right panel, quantification of the percentage of cells presenting lipid droplets (LD) within membrane protrusions. C, 1205Lu cells exposed to 3T3-F442A EV were stained with a MitoTracker probe. Then, cells were fixed and stained with BODIPY before observation by confocal microscopy.  D ,Transmission electron microscope observations of 1205Lu cells exposed, or not, to 3T3-F442A EV. Mitochondria are colored in pink and lipid droplets are colored in yellow on images on the right. E, Number of lipid droplets (LD) found within membrane protrusions on transmission electron microscopy images of 1205Lu cells exposed, or not, to 3T3-F442A EV (3T3-EV). F, Area of lipid droplets (LD) found within membrane protrusions on transmission electron microscopy images of 1205Lu cells exposed, or not, to 3T3-F442A EV. G, Left panel, 1205Lu melanoma cells were exposed, or not, to 3T3-F442A EV. Then, live cells were stained with LysoTracker and BODIPY probes and observed by confocal microscopy. Right panel, quantification of the percentage of cells presenting lysosome within membrane protrusions.

 

Figure 7. FA metabolism and mitochondrial dynamics are associated with melanoma aggressiveness. A, TCGA data were analyzed to reveal the effect of high mRNA levels of key FAO enzymes on the overall survival of patients with melanoma.  B, BODIPY staining of neutral lipid (from left to right). DAPI was used to counterstain nuclei. C, FAO in the indicated melanoma cell lines was measured.  D, TCGA data were analyzed to reveal the effect of high mRNA levels of key actors in mitochondrial dynamics on the overall survival of patients with melanoma.

使用基於SILAC技術的突破性方法,通過EV確定了通過脂肪從脂肪細胞轉移到腫瘤細胞的蛋白質,該方法允許對脂肪細胞蛋白質進行廣泛的標記,以便隨後通過質譜法在腫瘤細胞內進行鑑定。這是首次對通過EV在兩種細胞類型之間轉移的所有蛋白質進行了全面分析,文章還說明了該技術對任何培養的細胞類型研究EV介導的細胞間蛋白質轉運的實用性。使用這種方法,發現在受體黑素瘤細胞中僅檢測到約30%的標記脂肪細胞EV蛋白,而一些高度豐富的EV蛋白則被排除在轉移範圍之外。這個過程表明在脂肪細胞和黑色素瘤細胞之間有高度選擇性的EV介導的蛋白質轉移,這可能是由於某些EV群體沒有被黑色素瘤細胞或某些EV內在化,或者它們攜帶的蛋白質被快速分類以內化後降解。雖然還不完全了解如何在受體細胞中選擇性地內化和/或處EVs,但文章的方法為將來的研究解決這些問題提供了基礎。儘管有這種選擇性轉移,但黑色素瘤細胞還是內在地參與了糧農組織,線粒體呼吸和通過EV產生ATP的脂肪細胞蛋白。重要的是,還確定了黑色素瘤細胞響應脂肪細胞EV誘導的其他細胞過程中的關鍵貢獻者,這有助於調節其促遷移作用,脂質吞噬和線粒體動力學。

除了這種蛋白質轉移,還證明了脂肪細胞EVs還可以將FA傳遞給腫瘤細胞以驅動FAO,該過程的增加增強了肥胖中脂肪細胞EV的作用。先前已經描述了通過EV將代謝底物從腫瘤微環境轉移到癌細胞。確實,CAF衍生的EV將代謝產物轉運至腫瘤細胞,從而觸發了中央碳代謝。文章清楚地表明,脂肪細胞分泌的EV也可能導致FA轉移,僅這些EV就足以重塑黑色素瘤的代謝並促進侵略性。

因此,脂肪細胞EV介導脂肪細胞和黑色素瘤細胞之間的代謝合作,充當穿梭傳遞FAO所需的蛋白質機制和脂質底物的作用。有趣的是,在使用異丙腎上腺素刺激脂肪細胞脂解後,EV分泌和EV FA水平增加。因此,腫瘤誘導的脂解也可能促進這種過程是合理的。在文章之後,未來的研究應集中在癌細胞和脂肪細胞之間發生的雙向串擾對EV的影響。

在這項研究中,集中研究了調節脂肪細胞EV響應的調節黑色素瘤代謝和侵襲性的脂質和蛋白質因子,但重要的是要注意EV還轉運核酸,包括mRNA,microRNA和其他非編碼RNA,也可能參與了其促腫瘤作用。此外,脂肪細胞EV含有脂肪因子,尤其是瘦素,已被證明在黑色素瘤模型中具有促腫瘤作用,並且與黑色素瘤患者淋巴結轉移的風險增加有關。

研究結果也引起了人們對與肥胖相關的代謝併發症的藥物對脂肪細胞與腫瘤細胞之間對話的影響的質疑。同樣,二甲雙胍也影響FA代謝的不同方面,在許多不同的細胞類型中減少脂質的合成並增加FAO的含量,但在臨床前研究中還顯示其具有抗腫瘤特性。因此,要預見這種治療對肥胖癌症患者的影響是具有挑戰性的,未來的研究應集中於評估這一點。

總而言之,脂肪細胞EV提供了FAO對黑素瘤細胞所需的機制(酶)和底物(FA)。這些EVs轉移的脂肪酸被儲存在脂滴中,並通過脂肪吞噬動員,為FAO提供燃料。確定線粒體動力學為連結脂肪細胞誘導的FAO和腫瘤細胞遷移的過程。觀察到線粒體向需要突起的線粒體裂變的細胞突起的重新分布,這增加了由脂肪細胞EV誘導的細胞遷移。在肥胖症中,通過EVs提供更多的FA會放大整個過程。這些結果證明脂肪細胞和腫瘤細胞之間發生代謝合作。此外,文章揭示了這種相互作用中潛在的細胞過程,建議這些途徑可能包括治療肥胖黑色素瘤患者的新型治療靶標。

全文連結:

https://pan.baidu.com/s/1xKmp0MSpFTmUqSGWCCMn-Q

提取碼: vwx6

EVs-Exosomes由蘇大,浙大, 法國居裡研究所數位博士、博後及教授創建。

相關焦點

  • 甘油三酯的合成代謝與脂肪組織重塑
    脂肪酸中儲存了大量能量,但它並不適合大量儲存。它的極性頭和疏水尾構成典型的去汙劑結構,對細胞的穩定有很大威脅。少量脂肪酸可用FABP穩定,大量的就需要生成甘油三酯,儲存在脂滴中。脂肪酸不能直接與甘油反應,而是用脂醯輔酶A與3-磷酸甘油反應,先逐步將1位和2位羥基酯化,再將3位的磷酸水解,最後酯化成甘油三酯。
  • 孫承操/李得加/譚功軍合作發表細胞外囊泡和腫瘤免疫綜述論文
    近日,國際著名腫瘤學期刊Molecular Cancer(《分子腫瘤》IF=15.302)發表了武漢大學健康學院孫承操副教授、李得加教授和暨南大學譚功軍副教授課題組,在細胞外囊泡和腫瘤免疫方面的綜述論文。
  • 間充質幹細胞治療(四):效力評價|MSCs|幹細胞|適應症|外囊泡|-健康界
    最初,MSCs 的治療潛力被認為是可以可以遷移到受損組織、進行體內分化替換受損或死亡細胞。遺憾的是,MSCs 體內分化尚未得到證實,科學家發現其僅僅可以在體外分化。目前認為觀點 [3] 是,MSCs 移到損傷部位並分泌化學引誘劑,通過招募組織特異性幹細胞 進而產生新的組織,或發揮積極的免疫調節作用。MSCs 分泌物由細胞因子、趨化因子、生長因子和外囊泡 (攜帶蛋白質、脂質和各種RNA) 組成。
  • 自噬與腫瘤幹細胞代謝調控的交互作用
    CSCs中的自噬 自噬參與腫瘤起始、腫瘤與微環境中鄰近細胞的相互作用以及腫瘤治療所需正常細胞的功能。自噬在腫瘤中的作用是多方面的:通過提供代謝產物促進腫瘤細胞存活、通過線粒體(線粒體的選擇性降解)調節線粒體功能、通過控制促遷移分泌(細胞因子和粘著斑轉換)而在腫瘤細胞遷移和侵襲中起作用。
  • 腫瘤中的免疫細胞代謝
    例如,與對照相比,在黑色素瘤中腫瘤特異性CD4 + T細胞中糖酵解酶PEP羧激酶的過表達可以改善抗腫瘤反應。 線粒體呼吸也是Teff細胞代謝的關鍵。最近的研究報導,癌症患者的T細胞(與健康對照相比)和荷瘤小鼠的腫瘤浸潤性CD8 + T細胞(與非浸潤性CD8 + T細胞相比)顯示線粒體質量降低以及線粒體功能障礙。
  • 細胞內物質常見的運輸方式-囊泡運輸
    下列物質從合成部位運輸到作用部位不需要藉助囊泡運輸的是(    )解析:DNA聚合酶的本質是蛋白質,在核糖體合成後,通過核孔進入細胞核發揮作用,無需藉助囊泡的運輸,A正確;乙醯膽鹼是神經遞質,由突觸小泡與突觸前膜融合,並釋放到突觸間隙,所以需要藉助囊泡的運輸,B錯誤;白細胞介素-2是由T細胞分泌到細胞外的的淋巴因子,需要藉助囊泡的運輸,C錯誤;甲狀腺激素是由甲狀腺細胞分泌到細胞外的的激素,需要藉助囊泡的運輸
  • 惡病質在腫瘤轉移中的作用
    受腫瘤影響,肌肉中的蛋白質穩態趨向於合成減少和分解增加。 腫瘤惡病質患者通常會出現胰島素抵抗。在正常生理中,除了控制碳水化合物代謝外,胰島素還通過調節肌肉蛋白質的合成和分解以維持血糖水平。生理環境中,胰島素抵抗可抑制合成代謝PI3K-AKT途徑和激活泛素介導的蛋白酶體途徑來加速肌肉蛋白水解。
  • 線粒體乙醯化:蛋白組學,sirtuins去乙醯化酶, 以及對代謝和疾病的影響
    組蛋白乙醯化修飾同時受組蛋白乙醯基轉移酶和去乙醯化酶的調控。在過去的20年中,蛋白乙醯化修飾範圍已經從組蛋白擴展到亞細胞結構及細胞各項生命活動中的蛋白。最近的一項蛋白組學研究確定了蛋白乙醯化修飾的3000多個位點,並且認識到乙醯化修飾是各種醯基化修飾的中心,這些醯基化修飾存在於各種生命中,並且調節細胞的轉錄、代謝等過程。
  • 細胞外囊泡成疾病治療新熱點,能否開啟抗癌新紀元?
    細胞外囊泡(EVs)在一定程度上改寫了這一局面。EVs:抗擊癌症的新利器據悉,腫瘤細胞的持續生長、入侵和轉移依賴於腫瘤細胞與複雜組織環境中細胞細胞間的雙向細胞交流。這種交流主要涉及到腫瘤微環境中癌症細胞和/或基質細胞內可溶性因子的分泌,這種交流也可以通過細胞外囊泡(EVs)來實現。
  • 樹突狀細胞功能的代謝調控:詳細解讀
    過氧化物酶體增殖物激活受體γ(PPARγ)是mTORC1的下遊通路,在moDCs分化早期上調,通過控制脂質代謝影響細胞成熟和功能。阻斷乙醯輔酶A羧化酶(ACC) 1可通過抑制胞質脂肪酸合成(FAS)減少moDCs分化。此外,PPARγ協同劑1α(PGC1α)、線粒體轉錄因子(TFAM)、線粒體生物誘導劑和間接的mTORC1靶點在moDC分化過程中均表達升高。
  • ...了篇53分的頂級綜述|細胞|腫瘤微環境|免疫|腫瘤|腫瘤細胞|葡萄糖
    例如,在使用黑色素瘤特異性T細胞的過繼T細胞模型中,與轉染空載體的T細胞相比,在腫瘤特異性CD4+T細胞中過表達一種糖酵解酶,磷酸烯醇丙酮酸羧激酶,可以改善抗腫瘤反應。線粒體呼吸也是Teff細胞代謝的一個重要方面。根據最近的幾項研究報導,癌症患者的T細胞和荷瘤小鼠的腫瘤浸潤性CD8+T細胞表現出線粒體數目減少以及線粒體功能障礙。
  • Nature:不同的線粒體代謝模式影響T細胞的分化和功能
    CD4細胞是人體免疫系統中的一種重要免疫細胞,在整個激活階段需要進行代謝重編程。在CD4T細胞中,T細胞受體的連接以及細胞因子信號的共同刺激下可誘導糖酵解合成代謝,這是細胞快速增殖所必需的。CD4T細胞分化和功能可通過信號傳導和轉錄重構協調進行,然而目前尚不清楚這些過程是否可由細胞中的代謝成分獨立調節。
  • Cell Reports | 小囊泡大困擾:腫瘤來源的外泌體會增強癌細胞免疫逃避?!
    2020年10月,中國科學院生物物理研究所蛋白質與多肽藥物重點實驗室梁偉研究員團隊在Cell Reports (IF=8.109)發表外泌體相關研究,揭示了腫瘤來源的外泌體(TDEs)作為脂肪酸載體,誘導代謝向氧化磷酸化轉變,導致樹突狀細胞(DCs)免疫功能障礙,並提示PPARα可能是一個潛在的免疫治療靶點。
  • 為了和導師愉快吹逼,我看了篇53分的頂級綜述|細胞|腫瘤微環境|...
    例如,在使用黑色素瘤特異性T細胞的過繼T細胞模型中,與轉染空載體的T細胞相比,在腫瘤特異性CD4+T細胞中過表達一種糖酵解酶,磷酸烯醇丙酮酸羧激酶,可以改善抗腫瘤反應。線粒體呼吸也是Teff細胞代謝的一個重要方面。根據最近的幾項研究報導,癌症患者的T細胞和荷瘤小鼠的腫瘤浸潤性CD8+T細胞表現出線粒體數目減少以及線粒體功能障礙。
  • 溶酶體、液泡、葉綠體等八種細胞器的結構和功能
    高爾基體與細胞的分泌功能有關,能夠收集和排出內質網所合成的物質,它也是聚集某些酶原的場所,參與糖蛋白和黏多糖的合成。高爾基體還與溶酶體的形成有關,並參與細胞的胞吞和胞吐作用。葉綠體是植物進行光合作用的細胞器。具有葉綠體的植物除高等植物外,還有真核藻類。葉綠體的形狀因物種的不同而有所差異。藻類的葉綠體形態差異較大,可以是板狀、帶狀、杯狀、囊狀、星狀等。
  • 脂肪酸的合成代謝
    當機體有充足的還原力(NADPH)和結構單元(比如二碳和三碳分子),就會加速合成代謝,用於生長和儲存。三碳片段合成糖、脂、蛋白或核酸都可以,但人體中的二碳片段(乙醯輔酶A)只能用來合成脂類,主要是酮體、脂肪酸和膽固醇。不論來自糖還是脂,乙醯輔酶A都是在線粒體中形成的,要合成脂肪酸或膽固醇都必須進入細胞質。
  • 小細胞外囊泡介導功能障礙的脂肪細胞和心肌細胞之間的病理通訊,作為加重糖尿病小鼠缺血/再灌注損傷的新機制
    Extracellular Microvesicles Mediated Pathological Communications between Dysfunctional Adipocytes and Cardiomyocytes as a Novel Mechanisms Exacerbating Ischemia/Reperfusion Injury in Diabetic Mice」,當前研究試圖闡明小細胞外囊泡
  • 內質網應激誘導劑可刺激脂肪細胞甘油三酯分解
    in adipose cells」的文章,發現不同的內質網應激誘導劑,均可有效地刺激大鼠脂肪細胞的甘油三酯分解,這為肥胖和糖尿病等內質網應激狀態下血脂紊亂及脂毒性和胰島素抵抗的發生提供了新的細胞生物學依據。
  • 細胞外囊泡成疾病治療新熱點!廣東已有多家醫院在做臨床試驗
    華中科技大學生命科學與技術學院教授甘路在本屆腫瘤學大會上就介紹了關於基于于胞外囊泡的抗腫瘤納米藥物,北京理工大學教授謝海燕的課題則展示了細胞外囊泡在協同治療領域的研究進展。(圖:中國醫學科學院基礎研究所副所長黃波教授)據中國醫學科學院基礎研究所副所長黃波教授介紹,中國科學家選擇細胞外囊泡中粒徑在100-1000納米之間的囊泡應用於腫瘤治療,已經完成臨床轉化,並看到了技術發展前景。
  • 細胞外囊泡和顆粒生物標誌物可定義多種人類癌症
    細胞外囊泡和顆粒生物標誌物可定義多種人類癌症 作者:小柯機器人 發布時間:2020/8/16 22:05:18 美國康奈爾醫學院David Lyden等研究人員合作發現,細胞外囊泡和顆粒生物標誌物可定義多種人類癌症。