一個巨大的量子現象——薛丁格方程上天了!

2021-01-15 原理

世間萬物都是由微小的粒子構成的,這些粒子經常會表現出令人匪夷所思的行為,量子力學正是用於描述這些粒子行為的物理學分支。而支配量子世界的方程的適用性,通常也被限制在亞原子領域。換句話說,微觀尺度所應用到的數學一般跟宏觀尺度沒有關係,反之亦然。


但是,來自加州理工學院的助理教授 Konstantin Batygin 有了一個令人驚喜的發現:量子力學的基礎方程——薛丁格方程——在描述特定天體結構的長期演化時出奇的有用



○ 物理學家發現,在大質量天體周圍形成的圓盤內的波的傳播竟然可以被量子力學的基礎方程——薛丁格方程——所描述。| 圖片來源:James Tuttle Keane, California Institute of Technology


大質量天體的周圍經常環繞著許多小的物體,例如,在超大質量黑洞周圍有成群的恆星圍繞著它們旋轉,而這些恆星自己也被大量的巖石、冰塊或其它的太空碎片所環繞。由於引力作用,這些大量的物質會形成扁平的圓盤。這些圓盤是由數不清的單獨粒子構成的,其寬度可以從太陽系的大小綿延至許多光年。



○ 在宇宙中,天體周圍形成圓盤是非常普遍的,比如土星和天王星的「行星環」,以及圍繞著超大質量黑洞的「吸積盤」等等。| 圖片來源:NAOJ


圓盤中的物質,在它們的一生中一般不會一直保持簡單的圓形。經歷百萬年的時間,這些圓盤會慢慢地演化,並且會像池塘中的漣漪一樣,呈現出大尺度畸變、彎曲、翹曲。天文學家一直都被這些扭曲的結構究竟是如何出現以及傳播的所困擾著。即使是計算機模擬也無法給出一個確定的答案,因為整個過程異常複雜。


Batygin,也許大多數人並不熟悉這個名字,但近兩年來肯定都聽說過太陽系中或許存在第九大行星。而提出第九大行星的理論家正是 Batygin。當 Batygin 正在加州理工學院教行星物理這門課時,他採用了一種被稱為微擾理論(perturbation theory)的近似方法來推算圓盤演化的簡單數學表述。天文學家經常使用這種近似方法,該方法是基於18世紀數學家拉格朗日(Joseph-Louis Lagrange)和拉普拉斯(Pierre-Simon Laplace)所發展出來的方程。在這些方程的框架內,每個特定軌道上的單個粒子和石塊都通過數學而混合在一起。如此一來,圓盤就可以被當做是一系列慢慢互相交換軌道角動量的同心線,從而進行模擬。



○ Batygin的模型。| 圖片來源:[1]


作為一個類比,我們可以想像在太陽系內,每顆行星被破壞成碎片,並且這些碎片被散布在行星原本環繞太陽的軌道上,如此一來,太陽就被一系列大質量的環所包圍,它們之間有引力相互作用。這些環的振動反映了數百萬年間真實的行星軌道演化,使得該近似方法十分準確。


但是,當用這種近似方法來對圓盤的演化進行模擬時,竟取得了意想不到的結果。Batygin 說:「在考慮圓盤中所有的物質時,我們讓圓盤中同心線的數量不斷增加、線的厚度也隨之越來越薄,從而最終同心線的數量趨近於無窮,因此從數學上看它們就好似是連續的。」沒錯,驚奇的事情發生了——Batygin發現,在計算中出現了薛丁格方程!


○ 描述單個粒子的薛丁格方程。薛丁格方程之於量子力學,就好比是牛頓第二定律之於經典力學。關於該方程可詳細閱讀《量子力學的核心——薛丁格方程》。


薛丁格方程是由奧地利物理學家薛丁格在1925年提出來的,它是量子力學的基礎:描述了在原子和亞原子尺度上,系統的反直覺行為。其中一個反直覺的事實是,亞原子粒子可以同時表現出離散的粒子和波的行為,這個現象被稱為波粒二象性。Batygin 的研究表明天體圓盤在宏觀尺度下表現出的扭曲行為跟粒子行為相似,而描述波在圓盤的內緣與外緣間來回穿梭所用到的數學,與描述單個量子粒子在兩個不同層的同心線上來回跳轉所需的數學一樣。換句話說,Batygin 的研究展現兩種情況之間的有趣類比:波在圓盤的內外邊緣的來回傳播,相當於一個量子粒子在兩面牆之間跳來跳去。



○ Batygin計算所得到的結果。這個方程看起來似乎和薛丁格方程有所不一樣,但如果仔細對比就會發現它們的基礎部分是一樣的。| 圖片來源:[1]


物理學家對薛丁格方程的掌握已經相當深入了,而發現這一經典的方程還能夠用來描述天體圓盤的長期演化,對於想要模擬大尺度現象的科學家而言簡直就是神來之筆。此外,令人驚喜的是,自然界中兩個看起來並無關聯的——描述大尺度和小尺度世界——物理學領域居然能夠由相似的數學所支配。


Batygin說:「這個發現太令人驚喜,當我們對光年數量級的距離進行描述時,薛丁格方程不太可能該出現的。跟亞原子物理相關的方程一般與大質量的天體現象無關。因此,我很高興找到了一個通常被用於微小系統的方程,也能在如此龐大的系統上得以運用。」


「根本上來說,薛丁格方程支配了類波擾動的演化。從某種意義上是說,代表扭曲的波以及天體圓盤的不平衡跟振動的弦並沒有多大的區別,它們自身也跟盒子裡的量子粒子的運動沒有什麼分別。回想起來,這種關聯似乎很明顯,但是將要揭開這種相互關係背後的數學支柱令人尤其興奮。」


編譯:Zwicky

參考來源:

[1] https://authors.library.caltech.edu/85094/1/sty162.pdf

[2] http://www.caltech.edu/news/massive-astrophysical-objects-governed-subatomic-equation-81517

相關焦點

  • 開啟量子力學大門的鑰匙:薛丁格方程
    卻沒有人知道,牛頓偉大的地方就是為這種現象找到了一個十分簡練的數學表達式,即F=ma,物體受到的外力等於質量與加速度的乘積,F=ma,一個看似簡單的乘法運算,卻可以解釋很多複雜的問題。ma去解決房間內空氣分子的運動問題,那麼就算使用世界上最先進的量子計算機,也無法完成這項數據龐大的工作,所以在微觀粒子世界,我們需要另外一種公式來替代類似於牛頓經典力學在宏觀世界的作用,它的名字為:薛丁格方程,也正是薛丁格方程開啟了量子力學的大門。
  • 薛丁格方程與粒子的衍射、幹涉現象漫談
    薛丁格波函數方程在量子力學中的地位被描述為同經典力學中的牛頓力公式、電磁學中的麥克斯韋方程一樣重要,是量子力學的數學靈魂!但薛丁格波函數方程卻是量子力學的神來之筆,它不是從任何物理原理中推導出來的,而是薛丁格「靈光一現」的產物,直到現在也沒有人知道薛丁格是如何得出這個波函數的
  • 薛丁格方程
    關於量子態與薛丁格方程的概念涵蓋於基礎量子力學假說裡,無法從其它任何原理推導而出。在經典力學裡,人們使用牛頓第二定律描述物體運動。而在量子力學裡,類似的運動方程為薛丁格方程。薛丁格方程的解完備地描述物理系統裡,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛丁格方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。
  • 薛丁格方程及薛丁格的貓
    大家好,歡迎收看我的百家號萌萌說說說,今天小編要給大家介紹的是薛丁格方程及薛丁格的貓。薛丁格方程埃爾溫·薛丁格為量子力學作出了最寶貴的貢獻。他在意識到粒子表現出波動性後,提出了一個波動方程來描述亞原子粒子的運動。
  • 五分鐘量子力學(七),量子史話:偉大的薛丁格方程
    也許您是第一次看我的文章,也沒學過量子力學,更沒聽說過神馬薛丁格方程,但是您一定聽說過薛丁格的貓。嗯,就是那隻又死又活的貓。在這裡小編插播一下,對這隻貓進行一下說明。其實這隻又死又活的貓是因為薛丁格沒有理解波函數的真正物理含義——統計的概率解釋。也就是說,這隻貓或死或活的概率都是50%,這是一個大量樣品的統計結果。
  • 逆轉的薛丁格方程,美俄科學家實現量子時間「倒流」,令人興奮
    為了解釋自己發現的新現象,他們舉了一個例子。)可逆的薛丁格方程美國阿貢國家實驗室的材料科學家Valerii Vinokur卻告訴我們:「可是,薛丁格方程是可逆的。當這個模型開始運行的時候,這些量子比特就會開始運動,產生不同的運動結果。不過,科學家們通過控制量子計算機的的一些設定條件,將它們的運動模式進行限定,約束在可以逆轉薛丁格方程的範圍內。接下來,他們開始運行計算機。果然,就像散落在桌上的撞球自發回到了三角架裡一樣,這些量子比特也果然逆轉了薛丁格方程,回到了最初的狀態。
  • 「猜」出來的薛丁格方程
    因此,這麼重要的一個方程,不學真的是對不起自己。        讓我們先來看看薛丁格方程長什麼樣:        德布羅意給出了物質波的概念,現在輪到薛丁格出場了,他需要給出一個描述物質波的方程。薛丁格這項工作的起點其實就是經典物理學裡的波動方程[6]:
  • 薛丁格方程是怎麼推導出來的?
    1926年,薛丁格分四部分發表了「作為本徵值問題的量子力學」一文,為量子力學奠定了基礎,也奠立了他在物理學史上的地位。基於此套說法的量子力學叫波動力學,這個函數叫波函數。顯然,人們有理由知道這個方程是怎麼來的!薛丁格是如何得到他的量子力學方程的,從文獻中的資料不易再現當初完整的過程。薛
  • 從薛丁格方程到薛丁格的貓,薛丁格的這兩件東西顛覆了整個世界
    量子講堂第十三期:從薛丁格方程到薛丁格的貓,薛丁格親手創建的這兩件東西,第一件東西顛覆了經典物理學,第二件東西則顛覆了整個宏觀世界說起薛丁格,可能大家第一時間想到的就是那隻讓整個世界都為之瘋狂的薛丁格的貓,但薛丁格的貓僅僅是一個思想實驗而已。
  • 我們可以將量子數看作是薛丁格方程的本徵態數
    薛丁格方程是量子力學的基本假設,也是現在大部分涉及到微觀電子的理論基礎。我們既然需要用薛丁格方程解決的問題,那麼薛丁格方程一定是有解的,那麼什麼叫一定是,即無論怎麼能進行求解,一定都是正確的呢?有興趣的同學可以自己試一下,因為這裡不會展開談論波函數坍縮的計算問題。
  • 袁燦倫重建《新量子力學》(十六)含N個檢驗量子的薛丁格方程
    ,通常問題用駐波條件就可以求解了,並且簡單到只需要幾步代數式,但如果沒有一個方程,大家總是感覺到心裡不踏實,現在就建立新量子力學的薛丁格方程。物理學的運動規律一般都由方程描述,量子力學的五個基本假定中第二個基本假定是:微觀體系的運動狀態波函數隨時間變化的規律遵從薛丁格方程:
  • 【仿真百科】薛丁格方程
    在量子力學中,薛丁格方程的解(即波函數)通過波函數的線性組合,產生基本粒子在時間和空間上的位置的概率函數。在大多數情況下,量子化能級存在波函數;也就是說,可能只存在特定的離散值。例如,電子密度波函數可以產生原子和分子的軌道概率函數。我們來看一個使用薛丁格方程公式描述氫原子的例子:
  • 用深度神經網絡求解『薛丁格方程』,AI開啟量子化學新未來|Nature...
    它出自某部科幻作品,暗指劇情中那些解釋不通的、奇奇怪怪的現象,都可以用「量子力學」來矇混過關。在介紹它之前,我們先來簡單了解下薛丁格方程。什麼是薛丁格方程?薛丁格方程(Schrödinger Equation),是量子力學中的一個基本方程。又稱薛丁格波動方程(Schrödinger Wave Equation),它的命名來自一位名為埃爾溫·薛丁格(Erwin Schrödinger)的奧地利物理學家。
  • 用深度神經網絡求解「薛丁格方程」,AI開啟量子化學新未來|Nature...
    遇事不決,量子力學!相信很多朋友都聽過這句略帶諷刺的網絡流行語。它出自某部科幻作品,暗指劇情中那些解釋不通的、奇奇怪怪的現象,都可以用「量子力學」來矇混過關。19世紀末,量子力學的提出為解釋微觀物質世界打開了一扇大門,它徹底改變了人類對物質結構及相互作用的理解。已有實驗證明,量子力學解釋了許多被預言、無法直接想像的現象。
  • 含有自旋磁矩量的新薛丁格方程誕生了
    但就薛丁格方程而言,從本質上講,它不是一個標準的定量方程,而是一個反映系統概率特徵的統計描述,並且,這個方程不僅缺失了對粒子自旋及自旋磁矩要素,而且更缺失了粒子與縫或中心場之間的力關係要素,也就是說,薛丁格方程,從物理機制上講並不神秘,關鍵是我們在研究粒子運動時忽略了空間的磁場性和粒子自身的自旋、自旋磁矩性,因此說經典的薛丁格方程存在巨大的改進和提升空間。
  • 早期量子理論:從黑體輻射到薛丁格方程,見證量子理論的發展
    量子物理是研究微觀粒子(線度為10^-10m)運動規律及微觀結構的一門學科,是近代和現代物理學的理論支柱。本文將介紹早期量子理論的相關知識。因為專業性複雜,不再列出具體公式。高溫下鐵絲bian'hong為了找到黑體輻射的規律,1900年瑞利和金斯根據經典電磁理論和線性諧振子能量按自由度均分的思想,得出一個理論公式
  • 探索量子力學世界的語言,薛丁格方程的誕生——波動力學
    小編雖沒學過量子力學,聽過了太多的量子科學家們的八卦故事,偶然的機會認真的了解了量子力學的發展史,有些故事還是挺有意思的,但不是八卦故事那樣神秘又傳奇,從今天開始,分享一下自己學到的量子力學發展的故事。狄拉克等著圖書館一開門兒,馬上就竄進去。然後再書堆裡就一頓找,終於找到他需要的東西了。這東西叫做泊松括號。是法國數學家泊松在解哈密頓正則方程的時候發明的一種數學符號。
  • 波函數與薛丁格方程
    量子力學的學習一定要對波函數以及薛丁格方程這兩個概念有深刻的認識。目前我們已經學習了量子力學第一章內容,對於這些概念應該有自己的思考。      波函數是描述一個物理系統的時間演化規律的唯一基本函數。知道了它,原則上就可以得到該系統的所有物理量。
  • 薛丁格方程與電子軌道
    原子核外電子的排布影響了原子的性質和立體結構那麼核外電子是怎樣排布的呢這就要從薛丁格方程開始講了
  • 用深度神經網絡求解「薛丁格方程」,AI開啟量子化學新未來|Nature子刊
    遇事不決,量子力學!相信很多朋友都聽過這句略帶諷刺的網絡流行語。它出自某部科幻作品,暗指劇情中那些解釋不通的、奇奇怪怪的現象,都可以用「量子力學」來矇混過關。該研究團隊的負責人弗蘭克·諾(FrankNoé)教授自信地表示:「相信我們提出的神經網絡計算方法可以極大地影響量子化學的未來。」他們將這種神經網絡命名為—PauliNet.在介紹它之前,我們先來簡單了解下薛丁格方程。什麼是薛丁格方程?