九年級數學,阿基米德折弦定理,截長補短法的應用

2020-12-03 勤十二談數學

截長補短法是全等三角形中的重要輔助線之一,因為在其它幾何題中應用較少,很多同學學完後就忘記了。但是,在圓中,也有不少題目可以與截長補短法結合考查。截長補短法的顯著特點就是證明:AB+CD=EF,這種類型的題目,當然也可能與勾股定理相結合,比如證明AB+CD=根號2EF等等。遇到這樣的題目,首先想一下能不能使用截長補短法進行證明,不行的話再想其它的方法。

阿基米德折弦定理:如圖,AB和BC是⊙O的兩條弦(即折線ABC是⊙O的一條折弦),BC>AB,M是弧ABC的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.

分析:要證明CD=AB+BD,可以發現,線段CD是最長邊,AB、BD為較短邊,那麼我們可以在CD上截取AB或BD,也可以延長AB或BD使之長度與線段CD的長度相等。利用截長補短法的目的是為了得到全等三角形,最直接的輔助線為連接MB,在線段CD上截圖DH=BD,可以得到△MDB≌△MDH,但是無法再證明另外一對三角形全等。

雖然無法直接得到結論,但是給我們提供了證明的思路。在CB上截取CG=AB,連接MA,MB,MC和MG.

∵M是弧ABC的中點,

∴MA=MC

又∵∠A=∠C

∴△MAB≌△MCG

∴MB=MG

又∵MD⊥BC

∴BD=DG

∴AB+BD=CG+DG即CD=DB+BA

理解運用:BC是⊙O的直徑,點A圓上一定點,點D圓上一動點,且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,求AD長.

分析:∠DAC=45°可分兩種情況進行討論,點D可能在點C的下方,也可能在點C的上方。可過點D作AC的垂線,構造出阿基米德折弦,然後通過勾股定理求出線段AD的長度。

這類題目綜合性強,正確作出輔助線是解題的關鍵。

中考數學專題有哪些?重難點是什麼?關注以下文章吧。

2020年中考數學專題複習,二次函數實際應用題,這10分千萬不能丟

2020年中考專題複習,等角、倍角、最大角、範圍角問題,難度大

2020年中考專題複習,圓的相關概念性質、計算,「圓」來如此簡單

2020年中考專題複習,關注熱門考點的同時,冷門新穎題你關注了嗎

相關焦點

  • 八年級數學期中考,我只複習這7個題型,不清楚考試重點的快收藏
    初中各校將在10月下旬陸續舉行期中考試,八年級的小夥伴是否為複習八年級數學煩惱呢?按人教版八年級上冊數學教學大綱要求,期中考主要考《三角形》、《全等三角形》和《軸對稱》這三章,這三章有哪些重要的考點和難點,我總結了六個高頻考點和一些經典例題,希望能幫助到你。
  • 「持續更新」全等三角形常見輔助線:截長補短法 - 勤十二談數學
    在剛學習全等三角形的時候,建議同學們把過程寫的完整點,理由也寫在每一步的後面,按照證明全等的步驟把三個條件按定理排列好用大括號括起來。當然,全等三角形中,除了要掌握常規的定理外,還需要了解一些輔助線的作法。截長補短法常用來解決線段和差之間的關係,如果題目中出現了線段和差,我們可以試著用截長補短法來做。截長法:在長邊上截取一條與某一短邊相同的線段,再證剩下的線段與另一短邊相等.
  • 九年級數學,如何讓簡單概念變得有趣,知識點整合垂徑定理應用
    例題2:最長與最短的弦,在圓當中就是一條過圓心的直徑和垂直於這條直徑的弦,這裡會產生特殊角,然後OP的長度可以通過勾股定理,就可以求出來,之前的很多考試中會讓你去求AC的長度,其實意義一樣,都是通過勾股定理去發現問題的本質。
  • 九年級數學,元月調考備戰之垂徑定理應用,你不能忽視的內容
    和大家分享垂徑定理的應用,其實內容的本質是什麼呢?就是將之前所學的知識點串起來,我在想如果我自己的孩子到了九年級才學習圓的知識是不是會比較懵,因為我腦袋比較笨。所以,我更願意讓我的孩子早點開始學習圓裡面的一些基本知識點。
  • 初中數學中考難點:九年級數學上冊圓及幾何動點最值問題考點解讀
    本專欄包括人教版九年級上冊第24章圓(第1-35課)及中考數學幾何動點最值壓軸題型(第36-79課)含隱形輔助圓、瓜豆原理、胡不歸問題、阿氏圓模型、費馬點模型,由於將軍飲馬問題與三角形關係密切,故放在了三角形專欄進行了講解。
  • 九年級數學,關於解直角三角形的應用這些你必須掌握,考試熱點!
    在前面的文章中,我們已經分享了關於解直角三角形的概念相關知識,今天接著分享一下關於解直角三角形的應用,這類知識主要包含三類知識點:①仰角和俯角;②坡度和坡角;③方向角或方位角;每年全國各省市的中考真題中常常看到它們的身影,屬於中考數學的必考題,今天我們還是將主要採取「知識點+題型」的結構來進行分享
  • 2021年初中八年級數學定理:平面幾何定理
    中考網整理了關於2021年初中八年級數學定理:平面幾何定理,希望對同學們有所幫助,僅供參考。   10、(九點圓或歐拉圓或費爾巴赫圓)三角形中,三邊中心、從各頂點向其對邊所引垂線的垂足,以及垂心與各頂點連線的中點,這九個點在同一個圓上,   11、歐拉定理:三角形的外心、重心、九點圓圓心、垂心依次位於同一直線(歐拉線)上   12、庫立奇*大上定理:(圓內接四邊形的九點圓)   圓周上有四點,過其中任三點作三角形,這四個三角形的九點圓圓心都在同一圓周上
  • 數學之神,力學之父-阿基米德
    他就是浮力定理的發現者阿基米德。阿基米德知道了什麼呢?他在洗澡時想起了他的浮力原理。完全浸沒在水中的物體,物體排開水的體積等於它自身的體積。原來 最近皇帝交給阿基米德一件任務。要阿基米德檢測他新做的精美的皇冠是否為純金打造。阿基米德為這件事情,苦思冥想好幾天了,終於在他洗澡時想出了這個好辦法。
  • 數學大師啟示錄——阿基米德
    阿基米德置身於學術的殿堂,在璀璨群星光照之下潛心研究, 學到了豐富的知識。更重要的是,他博採眾長,形成自己的見解、 方法和風格。 「希臘數學鼻祖 」泰勒斯(約前 624—約前 547)把幾何從測量 經驗提高為演繹科學,建立了初等幾何的一些定理。阿基米德很贊 賞泰勒斯把自己的理論付諸實踐:利用相似形概念,測算金字塔高 度以及航船和海岸的距離,研究航海技術和貿易經濟。
  • 初中數學培優 八年級上 第二講 命題與證明 真假命題 逆命題
    百家號裡面輸入數學公式,顯示實在有問題,直接上圖片吧。初中數學培優 八年級上 第二講 命題與證明 真假命題 逆命題1.2.判斷一個命題是真命題,主要依據已知的定理、公理或相關數學性質,而判斷一個命題是假命題,只要舉一個反例即可。3.證明一個命題,要根據題意,分析命題的條件和結論,有條理的寫出證明過程,證明的每一步都要有依據,這些依據可以是定義、定理、公理、已知等。4.反證法的基本步驟:(1)假設,否定待證命題的結論;(2)推理導出矛盾;(3)肯定原命題的結論。
  • 九年級數學,學完垂徑定理和內接四邊形後,這些基本訓練要靈活用
    今天我們主要從三個方面來關注九年級圓前半部分的學習內容。垂徑定理學完,這邊我們也已經把圓內接四邊形學完後,我們就要開啟一段小綜合之路。先看下面的專題,從學生的書寫上而言,這位同學算基本功比較強的孩子了。那麼這位同學是不是就沒有地方進一步提升呢?
  • 八年級數學,全等三角形你不能錯過的精彩(超全基礎模型)考神附體
    這裡總結一下目前武漢市場上各種數學輔導資料,包括但不限於(qxz、xgc、xdl、cjkt、zndsc等),這些資料的質量上和口碑上都是非常牛的,這個帖子,就是希望更多的家長和同學在八年級學習全等的時候避免走些彎路。
  • 七年級數學學習方法:數學定理的學習方法
    中考網整理了關於七年級數學學習方法:數學定理的學習方法,希望對同學們有所幫助,僅供參考。   (1)數學概念的學習方法:   ①讀概論,記住名稱或符號;   ②閱讀背誦定義,掌握特性;   ③舉出正反實例,體會概念反映的範圍;   ④進行練習,準確地判斷;   ⑤與其他概念相比較,弄清概念間的關係。
  • 5.九年級數學:方程x²-ax-2=0的兩根,下列結論一定正確的是哪個?
    九年級數學:方程x²-ax-2=0的兩根,下列結論一定正確的是哪個?大家先在草稿本上,先認真地做一遍,然後再看後面的視頻。期待您在評論區留言。歡迎大家,分別添加,同時關注,方老師的這三個微信公眾號。(方老師數學課堂矩陣公眾號,注重基礎常考題,全部免費分享)1.方老師數學課堂(微信號:fanglaoshi5810):主要發布初中數學,從七年級下冊,到九年級下冊,整個中考數學的幾何部分。
  • 4月16日九年級數學練習題
    4月16日九年級數學練習題題目第四題為四邊形綜合題,涉及到直角三角形中線定理、三角形相似等知識點,這種新定義類題目,通常按照題設順序逐次求解,第五題考查的是二次函數綜合運用,涉及到一次函數、一元二次方程應用、圖象的面積計算等。答案解析
  • 八年級上:中線定理與廣勾股定理
    今天我們來介紹勾股定理裡面的第三個知識點——中線定理中線定理是一種數學原理,指的是三角形一條中線兩側所對邊的平方和等於底邊一半的平方與該邊中線平方的和的兩倍。以上就是兩種中線定理的證明方法,同學們可以去探尋更多的證明思路,下面我們看看中線定理在複雜題型中的應用:
  • 勾股定理有哪些主要內容?一張勾股定理的思維導圖讓你一目了然
    在北師大版的教材中,勾股定理安排在了八年級數學上冊的第一章進行學習,主要的內容可以分為「勾股定理」、「勾股定理的逆定理」及「勾股定理的應用」三個部分,接下來我們結合教材的小節部分來看看勾股定理需要掌握哪些知識點。
  • 2021初中七年級數學公式:三角函數正切定理公式
    中考網整理了關於2021初中七年級數學公式:三角函數正切定理公式,希望對同學們有所幫助,僅供參考。   正切定理   在平面三角形中,正切定理說明任意兩條邊的和除第一條邊減第二條邊的差所得的商等於這兩條邊的對角的和的一半的正切除第一條邊對角減第二條邊對角的差的一半的正切所得的商.
  • 九年級數學,圓,相交弦定理
    相交弦定理現在雖然在初中數學中已經不作要求了,但是如果能提前掌握這個知識,解題時還是會有一定優勢的。概念:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。幾何語言:若圓內任意弦AB、弦CD交於點P則PA·PB=PC·PD(相交弦定理)定理的證明:連結AC,BD由圓周角定理的推論,得∠A=∠D,∠C=∠B。
  • 2021年初中七年級數學定理:三角函數定理
    中考網整理了關於2021年初中七年級數學定理:三角函數定理,希望對同學們有所幫助,僅供參考。