三維平行RESOLFT顯微鏡實現活細胞體積成像
作者:
小柯機器人發布時間:2021/1/14 15:33:11
瑞典皇家理工學院的kIlaria Testa團隊使用三維平行RESOLFT顯微鏡實現活細胞體積成像。相關論文於2021年1月11日在線發表於國際學術期刊《自然—生物技術》。
研究人員報導了一種3D、平行、可逆、可飽和/可切換的光學螢光躍遷(3D pRESOLFT)顯微鏡,其能夠在整個活細胞中提供低於80 nm的3D解析度。通過具有幹擾圖案的高度平行圖像採集,研究人員實現了大視野(約40×40 µm2)的快速(1-2 Hz)採集,從而創建了3D限制且等距間隔的強度最小值陣列。這使得研究人員能夠將可切換的螢光蛋白可逆地轉換為暗態,從而實現了有針對性的3D螢光限制。
研究人員在培養的海馬神經元可塑性期間,可視化了活細胞中細胞器的3D組織和動態以及突觸的體積結構變化。
據了解,闡明細胞內細胞器和分子的體積結構需要在所有三個維度上具有足夠高的空間解析度。當前的方法受到沿光軸的分辨能力不足、記錄時間長以及應用於活細胞成像時光漂白的限制。
附:英文原文
Title: Volumetric live cell imaging with three-dimensional parallelized RESOLFT microscopy
Author: Andreas Bodn, Francesca Pennacchietti, Giovanna Coceano, Martina Damenti, Michael Ratz, Ilaria Testa
Issue&Volume: 2021-01-11
Abstract: Elucidating the volumetric architecture of organelles and molecules inside cells requires microscopy methods with a sufficiently high spatial resolution in all three dimensions. Current methods are limited by insufficient resolving power along the optical axis, long recording times and photobleaching when applied to live cell imaging. Here, we present a 3D, parallelized, reversible, saturable/switchable optical fluorescence transition (3D pRESOLFT) microscope capable of delivering sub-80-nm 3D resolution in whole living cells. We achieved rapid (1–2Hz) acquisition of large fields of view (~40×40μm2) by highly parallelized image acquisition with an interference pattern that creates an array of 3D-confined and equally spaced intensity minima. This allowed us to reversibly turn switchable fluorescent proteins to dark states, leading to a targeted 3D confinement of fluorescence. We visualized the 3D organization and dynamics of organelles in living cells and volumetric structural alterations of synapses during plasticity in cultured hippocampal neurons.
DOI: 10.1038/s41587-020-00779-2
Source: https://www.nature.com/articles/s41587-020-00779-2