圍星(mzym64)——您的學識永遠不會被偷走,他總會在不經意間給您最好的幫助。
光速是指光波或電磁波在真空或介質中的傳播速度。真空中的光速是目前所發現的自然界物體運動的最大速度。眾所周知在真空中光的傳播是的30萬千米/秒。那麼這麼快的速度是怎麼測量出來的呢?
光速的測定,經歷了多個階段,光速的測定值也越來越精確,以下做分別說明。
伽利略舉燈間隔法
伽利略舉燈間隔法
伽利略的方法是,讓兩個人分別站在相距1.6km的兩座山上,每個人拿一個遮蔽著的燈。第一個人先舉起燈,同時記下時間。當第二個人看到第一個人的燈時立即舉起自己的燈,也記下時間。從第一個人舉起燈到他看到第二個人的燈的時間間隔就是光傳播1.6km裡的時間。為了減小誤差,伽利略反反覆覆舉燈,但當時的他不知道光的傳播速度實在是太快了,這種方法根本行不通。但伽利略的實驗揭開了人類歷史上對光速進行研究的序幕。
衛星蝕法
衛星蝕法
1676年丹麥天文學家羅默通過衛星蝕法測量了光速。
由於任何周期性的變化過程都可當作時鐘,他成功地找到了離觀察者非常遙遠而相當準確的「時鐘」,羅默在觀察時所用的是木星每隔一定周期所出現的一次衛星蝕。
他在觀察時注意到:連續兩次衛星蝕相隔的時間,當地球背離木星運動時,要比地球迎向木星運動時要長一些,他用光的傳播速度是有限的來解釋這個現象,光從木星發出(實際上是木星的衛星發出),當地球離開木星運動時,光必須追上地球,因而從地面上觀察木星的兩次衛星蝕相隔的時間,要比實際相隔的時間長一些;當地球迎向木星運動時,這個時間就短一些,因為衛星繞木星的周期不大(約為1.75天),所以上述時間差數,在最合適的時間不致超過15秒(地球的公轉軌道速度約為30千米/秒)。因此,為了取得可靠的結果,當時的觀察曾在整年中連續地進行,羅默通過觀察從衛星蝕的時間變化和地球軌道直徑求出了光速,由於當時只知道地球軌道半徑的近似值,故求出的光速只有214300km/s。
這個光速值儘管離光速的準確值相差甚遠,但它卻是測定光速歷史上的第一個記錄,後來人們用照相方法測量木星衛星蝕的時間,並在地球軌道半徑測量準確度提高後,用羅默法求得的光速為299840±60km/s。
菲索旋轉齒輪法
菲索旋轉齒輪法
1849年,法國人菲索第一次在地面上設計實驗裝置來測定光速。他將一個點光源放在透鏡的焦點處,在透鏡與光源之間放一個齒輪,在透鏡的另一測較遠處依次放置另一個透鏡和一個平面鏡,平面鏡位於第二個透鏡的焦點處。點光源發出的光經過齒輪和透鏡後變成平行光,平行光經過第二個透鏡後又在平面鏡上聚於一點,在平面鏡上反射後按原路返回。由於齒輪有齒隙和齒,當光通過齒隙時觀察者就可以看到返回的光,當光恰好遇到齒時就會被遮住。從開始到返回的光第一次消失的時間就是光往返一次所用的時間,根據齒輪的轉速,這個時間不難求出。通過這種方法,菲索測得的光速是315000千米/秒。由於齒輪有一定的寬度,用這種方法很難精確的測出光速。
空腔共振法
光波是電磁波譜中的一小部分,當代人們對電磁波譜中的每一種電磁波都進行了精密的測量。1950年,艾森提出了用空腔共振法來測量光速。這種方法的原理是,微波通過空腔時當它的頻率為某一值時發生共振。根據空腔的長度可以求出共振腔的波長,在把共振腔的波長換算成光在真空中的波長,由波長和頻率可計算出光速。當代計算出的最精確的光速都是通過波長和頻率求得的。1958年,弗魯姆求出光速的精確值:299792.5±0.1千米/秒。1972年,埃文森測得了目前真空中光速的最佳數值:299792457.4±0.1米/秒。
雷射測速法
1970年美國國家標準局和美國國立物理實驗室最先運用雷射測定光速,這個方法的原理是同時測定雷射的波長和頻率來確定光速(c=vλ),由於雷射的頻率和波長的測量精確度已大大提高,比以前已有最精密的實驗方法提高精度約100倍。
除了以上介紹的幾種測量光速的方法外,還有許多十分精確的測定光速的方法。
根據1975年第十五屆國際計量大會的決議,現代真空中光速的準確值是:c=299792.458km/s。
看更多科普文章
請長按下方圖片
識別二維碼 關注圍星
你若喜歡,為作者點個在看哦