2016年7月25日 訊 /生物谷BIOON/ --肺結核是一類全球感染人數最多(20億人),並且每年造成死亡人數最多的疾病,結核桿菌是肺結核的感染源,而機體中巨噬細胞分泌的IFN-gamma對於宿主抵抗結核桿菌的感染具有重要的作用。小鼠試驗以及臨床檢測結果均表明,缺乏IFN-gamma後機體更加容易受到結核桿菌侵染。IFN-gamma信號的抗感染機制包括抑制病原體的營養攝入,促進細胞自噬反應,表達內源性的抑毒因子(IFN誘導的GTPase等),以及產生NO。其中,NO具有明顯的抑制結核桿菌感染的效果。
HIF-1a是一類轉錄因子,在低氧環境下能夠誘導糖酵解相關基因的表達。最近研究表明,在LPS的刺激下HIF-1a能夠誘導巨噬細胞向M1方向分化。在膿毒症發病過程中,HIF-1a能夠介導宿主的免疫耐受效應,同時保持對病原體的殺傷活性。另外,HIF-1a還被證明能夠有效控制金黃色葡萄球菌,綠膿桿菌以及尿路感染的大腸桿菌的感染。缺乏HIF-1a的小鼠體內巨噬細胞缺乏ATP供應,因而難以遷移至炎症區域,同時,體內iNOS以及抗菌肽的表達也受到了明顯的影響。最近一些研究發現,HIF-1a可能參與了宿主的抗結核桿菌感染免疫反應。人為提高小鼠體內HIF-1a的水平有助於增強抗菌反應的效果。
為了進一步研究這一問題,來自美國加州伯克利分校的Sarah A. Stanley課題組進行了深入研究,相關結果發表在最近一期的《Journal of Immunology》雜誌上。
首先,作者檢測了小鼠感染結核桿菌之後體內巨噬細胞的狀態。結果顯示,在感染之後巨噬細胞內HIF-1a的表達量有較低水平的上升。但在經過LPS刺激之後,HIF-1a的水平開始明顯升高,進一步,作者發現IFN-g的刺激與結合桿菌的侵染協同刺激了HIF-1a的大量產生。之後,作者發現HIF-1a能夠有效促進受到IFN-g激活的巨噬細胞殺傷細菌的能力。
由於HIF-1a能夠調節多種基因的表達,為了尋找HIF-1a可能調節的抑制結合桿菌侵染的基因,作者進行了RNA-seq檢測。結果顯示,受到感染的巨噬細胞中有3330個基因的表達量有了上調,而IFN-g的刺激再次提高了其中2595個基因的表達量。其中,HIF-1a在未受刺激的巨噬細胞中僅調節118個基因,而在受到IFN刺激的巨噬細胞中,HIF-1a則能夠調節1191個基因的表達。在這些基因中,作者發現IL-1a,IL-1b,IL-6以及區劃因子CXCL1等的表達量都受到HIF-1a的調節。
之後,作者發現HIF-1a能夠調節巨噬細胞中PG以及NO的產生,進而對入侵的結合桿菌起到殺傷的作用。另外,在受到感染的巨噬細胞中,整個低氧的糖酵解代謝途徑的活躍程度有明顯的升高,這與HIF-1a也有重要的聯繫。
最後,作者通過體內試驗比較野生型小鼠與HIF-1a突變體小鼠在結合桿菌感染過程中的症狀差異,證明了HIF-1a對於宿主抵抗結核桿菌的感染具有重要的意義。(生物谷Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!點擊 獲取授權 。更多資訊請下載生物谷APP.
doi: 10.4049/jimmunol.1600266
PMC:
PMID:
HIF-1α Is an Essential Mediator of IFN-γ–Dependent Immunity to Mycobacterium tuberculosis
Jonathan Braverma, Kimberly M. Sogi, Daniel Benjamin, Daniel K. Nomur‡ and Sarah A. Stanley
The cytokine IFN-γ coordinates macrophage activation and is essential for control of pathogens, including Mycobacterium tuberculosis. However, the mechanisms by which IFN-γ controls M. tuberculosis infection are only partially understood. In this study, we show that the transcription factor hypoxia-inducible factor-1α (HIF-1α) is an essential mediator of IFN-γ–dependent control of M. tuberculosis infection both in vitro and in vivo. M. tuberculosis infection of IFN-γ–activated macrophages results in a synergistic increase in HIF-1α protein levels. This increase in HIF-1α levels is functionally important, as macrophages lacking HIF-1α are defective for IFN-γ–dependent control of infection. RNA-sequencing demonstrates that HIF-1α regulates nearly one-half of all IFN-γ–inducible genes during infection of macrophages. In particular, HIF-1α regulates production of important immune effectors, including inflammatory cytokines and chemokines, eicosanoids, and NO. In addition, we find that during infection HIF-1α coordinates a metabolic shift to aerobic glycolysis in IFN-γ–activated macrophages. We find that this enhanced glycolytic flux is crucial for IFN-γ–dependent control of infection in macrophages. Furthermore, we identify a positive feedback loop between HIF-1α and aerobic glycolysis that amplifies macrophage activation. Finally, we demonstrate that HIF-1α is crucial for control of infection in vivo as mice lacking HIF-1α in the myeloid lineage are strikingly susceptible to infection and exhibit defective production of inflammatory cytokines and microbicidal effectors. In conclusion, we have identified HIF-1α as a novel regulator of IFN-γ–dependent immunity that coordinates an immunometabolic program essential for control of M. tuberculosis infection in vitro and in vivo.