量子算法的突破
Breakthrough in quantum algorithms
The Google Quantum Computer. Credit: Eric Lucero/Google, Inc.
谷歌量子計算機。來源: Eric lucero/谷歌公司。
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers. Their paper, entitled 「Creating and Manipulating a Laughlin-Type ν=1/3 Fractional Quantum Hall State on a Quantum Computer with Linear Depth Circuits,」 appears in the December issue of PRX Quantum, a journal of the American Physical Society.
由紐約市立大學物理學家普揚 · 加米領導的研究人員報告了一種量子算法的發展,該算法有可能利用量子計算機研究一類多電子量子系統。他們的論文題為「在具有線性深度迴路的量子計算機上創造和操縱一個拉夫林型 ν = 1/3分數量子霍爾態」 ,發表在美國物理學會的雜誌《 PRX 量子》的12月刊上。
「Quantum physics is the fundamental theory of nature which leads to formation of molecules and the resulting matter around us,」 said Ghaemi, assistant professor in CCNY’s Division of Science. 「It is already known that when we have a macroscopic number of quantum particles, such as electrons in the metal, which interact with each other, novel phenomena such as superconductivity emerge.」
「量子物理學是自然界的基本理論,它導致了分子和我們周圍的物質的形成,」加米說,他是 CCNY 科學部的助理教授。「我們已經知道,當我們有宏觀數量的量子粒子時,比如金屬中的電子,它們相互作用,新奇的現象就會出現,比如超導現象。」
However, until now, according to Ghaemi, tools to study systems with large numbers of interacting quantum particles and their novel properties have been extremely limited.
「Our research has developed a quantum algorithm which can be used to study a class of many-electron quantum systems using quantum computers. Our algorithm opens a new venue to use the new quantum devices to study problems which are quite challenging to study using classical computers. Our results are new and motivate many follow up studies,」 added Ghaemi.
「我們的研究開發了一種量子算法,可以用來研究一類使用量子計算機的多電子量子系統。我們的算法為使用新的量子裝置研究用傳統計算機研究相當具有挑戰性的問題開闢了一個新的領域。我們的研究結果是新的,並激勵了許多後續研究。
On possible applications for this advancement, Ghaemi, who’s also affiliated with the Graduate Center, CUNY noted: 「Quantum computers have witnessed extensive developments during the last few years. Development of new quantum algorithms, regardless of their direct application, will contribute to realize applications of quantum computers.
關於這一進步的可能應用,紐約市立大學研究生中心附屬的加米指出: 「量子計算機在過去的幾年裡有了廣泛的發展。新量子算法的發展,無論其直接應用,都將有助於實現量子計算機的應用。
「I believe the direct application of our results is to provide tools to improve quantum computingdevices. Their direct real-life application would emerge when quantum computers can be used for daily life applications.」
「我相信我們的研究結果的直接應用是為改進量子計算設備提供工具。當量子計算機能夠應用於日常生活時,它們的直接現實應用就會出現。」
His collaborators included scientists from: Western Washington University, University of California, Santa Barbara; Google AI Quantum and the University of Michigan, Ann Arbor.
他的合作者包括來自西華盛頓大學,加州大學聖巴巴拉分校,谷歌人工智慧量子和密西根大學安娜堡分校的科學家。
Reference: 「Creating and Manipulating a Laughlin-Type ν=1/3 Fractional Quantum Hall State on a Quantum Computer with Linear Depth Circuits」 by Armin Rahmani, Kevin J. Sung, Harald Putterman, Pedram Roushan, Pouyan Ghaemi and Zhang Jiang, 3 November 2020, PRX Quantum.
DOI: 10.1103/PRXQuantum.1.020309
參考文獻: Armin Rahmani,Kevin j. Sung,Harald Putterman,Pedram Roushan,Pouyan ghemi and Zhang Jiang,2020年11月3日,PRX Quantum.DOI: 10.1103/PRXQuantum. 1.020309