[1]FuY, DominissiniD, RechaviG, et al. Gene expression regulation mediated through reversible m6A RNA methylation[J]. Nat Rev Genet, 2014, 15(5): 293-306. DOI: 10.1038/nrg3724.
[2]MeyerKD, SaletoreY, ZumboP, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646. DOI: 10.1016/j.cell.2012.05.003.
[3]GeulaS, Moshitch-MoshkovitzS, DominissiniD, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation[J]. Science, 2015, 347(6225): 1002-1006. DOI: 10.1126/science.1261417.
[4]WangX, FengJ, XueY, et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2016, 534(7608): 575-578. DOI: 10.1038/nature18298.
[5]PingXL, SunBF, WangL, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. DOI: 10.1038/cr.2014.3.
[6]YueY, LiuJ, CuiX, et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discov, 2018, 4: 10. DOI: 10.1038/s41421-018-0019-0.
[7]JiaGF, FuY, ZhaoX, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. DOI: 10.1038/nchembio.687.
[8]ZhengG, DahlJA, NiuY, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. DOI: 10.1016/j.molcel.2012.10.015.
[9]XiaoW, AdhikariS, DahalU, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4):507-519. DOI: 10.1016/j.molcel.2016.01.012.
[10]RoundtreeIA, LuoGZ, ZhangZ, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. Elife, 2017, 6: e31311. DOI: 10.7554/eLife.31311.
[11]HsuPJ, ZhuY, MaH, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27(9): 1115-1127. DOI: 10.1038/cr.2017.99.
[12]WangX, ZhaoBS, RoundtreeIA, et al. N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6): 1388-1399. DOI: 10.1016/j.cell.2015.05.014.
[13]WangX, LuZ, GomezA, et al. N6-methyladenosine- dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. DOI: 10.1038/nature12730.
[14]ShiH, WangX, LuZ, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3): 315-328. DOI: 10.1038/cr.2017.15.
[15]LiA, ChenYS, PingXL, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017, 27(3): 444-447. DOI: 10.1038/cr.2017.10.
[16]AlarconCR, GoodarziH, LeeH, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6): 1299-1308. DOI: 10.1016/j.cell.2015.08.011.
[17]LiuN, DaiQ, ZhengG, et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540): 560-564. DOI: 10.1038/nature14234.
[18]MeyerKD, PatilDP, ZhouJ, et al. 5′ UTR m6A promotes cap-independent translation[J]. Cell, 2015, 163(4): 999-1010. DOI: 10.1016/j.cell.2015.10.012.
[19]LiuN, ParisienM, DaiQ, et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA[J]. Rna, 2013, 19(12): 1848-1856. DOI: 10.1261/rna.041178.113.
[20]ChenK, LuZ, WangX, et al. High-resolution N6 -methyladenosine (m6A) map using photo-crosslinking- assisted m6A sequencing[J]. Angew Chem Int Ed Engl, 2015, 54(5): 1587-1590. DOI: 10.1002/anie.201410647.
[21]GrozhikAV, LinderB, Olarerin-GeorgeAO, et al. Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP)[J]. Methods Mol Biol, 2017, 1562: 55-78. DOI: 10.1007/978-1-4939-6807-7_5.
[22]ZhangZ, ChenLQ, ZhaoYL, et al. Single-base mapping of m6A by an antibody-independent method[J]. Sci Adv, 2019, 5(7): eaax0250. DOI: 10.1126/sciadv.aax0250.
[23]VisvanathanA, PatilV, AroraA, et al. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance[J]. Oncogene, 2018, 37(4): 522-533. DOI: 10.1038/onc.2017.351.
[24]ChenM, WeiL, LawC, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270. DOI: 10.1002/hep.29683.
[25]CaiX, WangX, CaoC, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g[J]. Cancer Lett, 2018, 415: 11-19. DOI: 10.1016/j.canlet.2017.11.018.
[26]VuL, PickeringB, ChengY, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells[J]. Nat. Med., 2017, 23(11): 1369-1376. DOI: 10.1038/nm.4416.
[27]BarbieriI, TzelepisK, PandolfiniL, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control[J]. Nature, 2017, 552(7683): 126-131. DOI: 10.1038/nature24678.
[28]ChengM, ShengL, GaoQ, et al. The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-kappaB/MYC signaling network[J]. Oncogene, 2019, 38(19):3667-3680. DOI: 10.1038/s41388-019-0683-z.
[29]ChoeJ, LinS, ZhangW, et al. mRNA Circularization by METTL3-eIF3h enhances translation and promotes oncogenesis[J]. Nature, 2018, 561(7724): 556-560. DOI: 10.1038/s41586-018-0538-8.
[30]WengH, HuangH, WuH, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA mA modification[J]. Cell Stem Cell, 2018, 22(2): 191-205.e9. DOI: 10.1016/j.stem.2017.11.016.
[31]JoHJ, ShimHE, HanME, et al. WTAP regulates migration and invasion of cholangiocarcinoma cells[J]. J Gastroenterol, 2013, 48(11): 1271-1282. DOI: 10.1007/s00535-013-0748-7.
[32]CuiQ, ShiH, YeP, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017, 18(11): 2622-2634. DOI: 10.1016/j.celrep.2017.02.059.
[33]MaJZ, YangF, ZhouCC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6 -methyladenosine-dependent primary microRNA processing[J]. Hepatology, 2017, 65(2): 529-543. DOI: 10.1002/hep.28885.
[34]LiuJ, EckertMA, HaradaBT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer[J]. Nat Cell Biol, 2018, 20(9): 1074-1083. DOI: 10.1038/s41556-018-0174-4.
[35]LiZ, WengH, SuR, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase[J]. Cancer Cell, 2017, 31(1): 127-141. DOI: 10.1016/j.ccell.2016.11.017.
[36]SuR, DongL, LiC, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling[J]. Cell, 2018, 172(1-2): 90-105.e23. DOI: 10.1016/j.cell.2017.11.031.
[37]ZhouS, BaiZL, XiaD, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation[J]. Mol Carcinog, 2018, 57(5): 590-597. DOI: 10.1002/mc.22782.
[38]LiuJ, RenD, DuZ, et al. m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J]. Biochem Biophys Res Commun, 2018, 502(4): 456-464. DOI: 10.1016/j.bbrc.2018.05.175.
[39]NiuY, LinZY, WanA, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol cancer, 2019, 18(1): 46. DOI: 10.1186/s12943-019-1004-4.
[40]RongZX, LiZ, HeJJ, et al. Downregulation of fat mass and obesity associated (FTO) promotes the progression of intrahepatic cholangiocarcinoma[J]. Front Oncol, 2019, 9: 369. DOI: 10.3389/fonc.2019.00369.
[41]ZhangC, ZhiWI, LuH, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217-and ALKBH5-mediated modulation of RNA methylation in breast cancer cells[J]. Oncotarget, 2016, 7(40): 64527-64542. DOI: 10.18632/oncotarget.11743.
[42]ZhangS, ZhaoB, ZhouA, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program[J]. Cancer Cell, 2017, 31(4): 591-606.e6. DOI: 10.1016/j.ccell.2017.02.013.
[43]YangZ, LiJ, FengG, et al. MicroRNA-145 modulates N6-methyladenosine levels by targeting the 3′-untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein[J]. J Biol Chem, 2017, 292(9): 3614-3623. DOI: 10.1074/jbc.M116.749689.
[44]LiJ, MengS, XuM, et al. Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels[J]. Oncotarget, 2018, 9(3): 3752-3764. DOI: 10.18632/oncotarget.23365.
[45]NishizawaY, KonnoM, AsaiA, et al. Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer[J]. Oncotarget, 2018, 9(7): 7476-7486. DOI: 10.18632/oncotarget.23554.
[46]TanabeA, TanikawaK, TsunetomiM, et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1alpha mRNA is translated[J]. Cancer Lett, 2016, 376(1): 34-42. DOI: 10.1016/j.canlet.2016.02.022.
[47]HuangW, QiCB, LvSW, et al. Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry[J]. Anal Chem, 2016, 88(2): 1378-1384. DOI: 10.1021/acs.analchem.5b03962.
[48]TaketoK, KonnoM, AsaiA, et al. The epitranscriptome m6A writer METTL3 promotes chemo-and radioresistance in pancreatic cancer cells[J]. Int J Oncol, 2018, 52(2): 621-629. DOI: 10.3892/ijo.2017.4219.
[49]IslamMS, LeissingTM, ChowdhuryR, et al. 2-Oxoglutarate-dependent oxygenases[J]. Annu Rev Biochem, 2018, 87: 585-620. DOI: 10.1146/annurev-biochem-061516-044724.
[50]HuangY, SuR, ShengY, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia[J]. Cancer cell, 2019, 35(4): 677-691.e10. DOI: 10.1016/j.ccell.2019.03.006
[51]ZhengG, CoxT, TribbeyL, et al. Synthesis of a FTO inhibitor with anticonvulsant activity[J]. ACS Chem Neurosci, 2014, 5(8): 658-665. DOI: 10.1021/cn500042t.
[52]HuangY, YanJ, LiQ, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1): 373-384. DOI: 10.1093/nar/gku1276.