拓撲絕緣體研究獲進展

2020-11-25 科學網

 

美國杜克大學的研究人員採用高吞吐計算技術,依託海量電子結構資料庫(AFLOWLIB)發現多類拓撲絕緣體,相關研究成果5月13日以《A search model for topological insulators with high-throughput robustness descriptors》為題發表在《Nature Materials》雜誌。

 

該論文第一作者,現為杜克大學博士後的楊可松解釋說,這項工作的原始思想是尋找一種簡易並有效的方法從海量電子結構資料庫中尋找拓撲絕緣體。他們通過定義負能隙表徵反轉能帶結構以識別拓撲絕緣體,並通過分析自旋軌道耦合的物理本質,進而發現拓撲絕緣體在能帶反轉點(動量空間)的能隙差值(非自旋軌道耦合和自旋軌道耦合計算之間的差值,ΔEk)隨著晶格參數的略微變化近乎不變或者變化相對較小。楊可松進一步解釋說,這一現象主要歸因於自旋軌道耦合的絕大部分來源於原子內部的芯電子層,因此在格格參數略微變化的情況下(價電子的分布會有變化,但並不影響芯電子層或者影響較小),這個能隙差值ΔEk幾乎不會受到影響或者影響較小,而且ΔEk的數值將會成為拓撲絕緣體的一個非常重要的物理參量。根據這一發現,利用第一性原理計算方法可以快速並且有效地得到普通絕緣體發生拓撲量子結構相變的臨界晶格參數。

 

杜克大學研究人員定義「拓撲絕緣體健壯性描述符(Robustness descriptor)」,依託海量電子結構資料庫,採用高吞吐計算快速發現了五類拓撲絕緣體。在該論文中,他們還闡述了拓撲絕緣體的塊體能帶結構、能帶反轉點以及表面狄拉克點的位置之間的相互關係。楊可松說:「在該項工作中所採用的高吞吐計算技術以及用其搜尋具有特定性質材料的思想是實現「材料基因組計劃 (Materials Genome Project)」的關鍵環節,也代表了未來計算材料科學的發展方向之一。」

 

杜克大學機械工程和材料科學系教授Stefano Curtarolo領導的研究小組開發了高吞吐計算代碼AFLOW,並採用這項技術生成了一套海量電子結構資料庫系統(AFLOWLIB)。到目前為止,用戶可以從該資料庫從中查詢到大約1萬6千個無機晶體的電子結構以及其他相關信息。本文第一作者楊可松師從山東大學戴瑛教授,2010年獲得博士學位,同年8月赴美杜克大學從事博士後研究。楊可松是山東大學優秀畢業生,曾多次榮獲校級及省級榮譽,其博士畢業論文《摻雜二氧化鈦的穩定性、電子結構及相關性質的第一性原理研究》被評選為山東大學優秀博士學位論文年獲得博士學位。在本項工作中,楊可松把自旋軌道耦合和拓撲絕緣體的計算擴展到了AFLOW代碼,並完成了本文中全部的理論計算工作。(來源:山東大學)

 

更多閱讀

 

 

 

 

 

特別聲明:本文轉載僅僅是出於傳播信息的需要,並不意味著代表本網站觀點或證實其內容的真實性;如其他媒體、網站或個人從本網站轉載使用,須保留本網站註明的「來源」,並自負版權等法律責任;作者如果不希望被轉載或者聯繫轉載稿費等事宜,請與我們接洽。

相關焦點

  • 物理所關聯拓撲絕緣體和關聯拓撲晶體絕緣體研究獲進展
    拓撲絕緣體是當前凝聚態物理的研究熱點之一。這類材料不同於傳統的「金屬」和「絕緣體」,其體內為有能隙的絕緣態,而表面則是無能隙的金屬態。這種金屬表面態是由內在電子結構的拓撲性質決定的,受時間反演不變性的保護,因而受缺陷、雜質等外界影響較小。目前發現的和實驗研究的拓撲絕緣體大部分是半導體材料,電子間的關聯效應很小,理論分析較為簡單。
  • 拓撲絕緣體實驗研究取得新進展
    ,在拓撲絕緣體的實驗研究方面取得一系列突破性進展。原位角分辨光電子能譜測量顯示,這些薄膜具有本徵的絕緣體特徵。三維拓撲絕緣體的量子薄膜的實現為理論預言的量子反常霍爾效應、巨大熱電效應、激子凝聚等新奇量子現象的研究提供了基礎,是在拓撲絕緣體材料製備方面的一個重要進展。
  • 進展|本徵磁性拓撲絕緣體研究進展
    近十幾年來,拓撲絕緣體已經成為凝聚態物理領域的一個重要研究方向。對於Z2拓撲絕緣體,其拓撲性質受到時間反演對稱性的保護。如果將Z2拓撲絕緣體的時間反演對稱性破壞,會形成一類新的拓撲態,即磁性拓撲絕緣體。
  • 拓撲激子絕緣體相研究獲進展
    >   上世紀60年代,諾貝爾獎獲得者Mott提出激子絕緣相,Mott提出考慮庫侖屏蔽效應,在半金屬體系中電子-空穴配對而形成激子,可能會導致體系失穩,從而在半金屬費米面處打開能隙,形成激子絕緣體狀態
  • 拓撲絕緣體研究取得重要進展
    本報訊 日前,在中國科學院、國家自然科學基金、國家重點基礎研究發展計劃和國際科技合作計劃的支持下,中國科學院物理研究所、北京凝聚態物理國家實驗室博士張海軍,研究員戴希、方忠所在的T03組在拓撲絕緣體的研究方向上取得重要突破。
  • 「拓撲絕緣體研究取得重要進展」入選2010年度中國科學十大進展
    1月18日上午,科技部召開新聞發布會,公布了「2010年度中國科學十大進展」。清華大學薛其坤、陳曦研究組和中科院物理研究所馬旭村研究組,方忠、戴希研究組,孫慶豐和謝心澄,在拓撲絕緣體領域實驗和理論兩個方面取得的系列研究成果在國際學術界引起廣泛影響,該成果以總選票排名第一入選「2010年度中國科學十大進展」。
  • 物理所拓撲絕緣體材料生長調控和輸運性質研究獲系列進展
    最近三年來,三維拓撲絕緣體的研究在世界範圍內取得了飛速進展,並成為凝聚態物理研究中的一個爆發性熱點領域。拓撲絕緣體是一類具有非平庸的拓撲對稱性(Z2)的材料,其內部絕緣,但在表面上存在著一種無能隙的、線性色散並且自旋與動量鎖定的特殊電子態。這種新的量子物質態被預言可以產生出許多新奇的準粒子和物理效應,如磁單極、Majorana費米子和量子化的反常霍爾效應等。
  • 拓撲晶體絕緣體的拓撲超導電性研究獲得進展
    近日,李耀義特別研究員、賈金鋒教授研究團隊在拓撲晶體絕緣體Sn1-xPbxTe與超導體Pb形成的異質結中發現了超導拓撲晶體絕緣體存在拓撲超導電性的證據。拓撲超導體在體內具有全開的超導能隙,在表面具有無能隙的拓撲表面態。理論預言,在拓撲超導體磁通渦旋中能夠形成Majorana零能模,其具有非阿貝爾統計特性,適合用於構建拓撲量子比特,有望實現可容錯的拓撲量子計算。所以,拓撲超導體是目前一個非常熱門的前沿研究領域。拓撲絕緣體的拓撲表面態受時間反演對稱性保護,而拓撲晶體絕緣體的拓撲表面態受晶體對稱性保護。
  • 拓撲超導體與拓撲半金屬研究獲進展
    在尋找具有更高應用價值的強拓撲絕緣體材料的同時,許多新的拓撲物性被預言和發現,如磁單極、拓撲超導態、Majorana費米子和量子化的反常霍爾效應等。其中,尤以Majorana費米子和量子反常霍爾效應因其奇特的量子特性和應用價值而備受關注。
  • 量子材料科學中心在三維拓撲絕緣體表面態研究方面取得重要進展
    近日,北京大學量子材料科學中心劉海文、孫慶豐和謝心澄,與中心訪問學者蘇州大學江華,共同在三維拓撲絕緣體表面態研究方面取得重要進展,研究成果在線發表於7月24日的《物理評論快報》[Phys. Rev. Lett. 113, 046805 (2014).]
  • 上海交大賈金鋒團隊在拓撲晶體絕緣體的拓撲超導電性研究再獲突破...
    近日,李耀義特別研究員、賈金鋒教授研究團隊在拓撲超導電性研究中再次獲得突破性進展。他們利用超導針尖觀測到拓撲晶體絕緣體Sn1-xPbxTe超導能隙內有多重的束縛態,這一發現為超導拓撲晶體絕緣體存在拓撲超導電性提供了非常有力的直接證據。
  • 清華大學物理系研究團隊發現內稟磁性拓撲絕緣體
    清華大學物理系研究團隊發現內稟磁性拓撲絕緣體清華新聞網6月20日電 近日,清華大學物理系何珂、薛其坤等人的實驗研究團隊和徐勇、段文暉等人的理論研究團隊合作首次發現了一種內稟磁性拓撲絕緣體MnBi2Te4,為提升量子反常霍爾效應的溫度開闢了一條新的道路,並為多種新奇拓撲量子物態和效應的研究提供了一個理想平臺
  • 浙大科學家全球首次突破光學拓撲絕緣體研究,劍指6G
    「光」 與 「拓撲」 是楊怡豪研究的關鍵詞,從讀博開始,楊怡豪便開始從事與光學有關的研究。博士後研究期間,楊怡豪開始選擇拓撲光學作為自己的研究方向。  拓撲絕緣體:繼石墨烯之後的」Next Big Thing」   拓撲,是英文單詞 Topology 的中文音譯。
  • 彭海琳丨拓撲絕緣體:基礎及新興應用
    經過數十年的深入研究,拓撲絕緣體在理論基礎、材料體系、製備方法、物理性質、新型應用拓展等方面取得了顯著進步。從紅外到太赫茲頻段的超寬頻響應使拓撲絕緣體在微電子、光電子及自旋電子學等方面具有令人矚目的應用前景。由此,系統總結拓撲絕緣體國內外最新的研究成果,對推動其實際應用至關重要。電子學和微電子學在20世紀取得了重大成就。
  • 黃銅礦中存大量拓撲絕緣體材料
    當ΔE < 0時,方形代表拓撲絕緣體,菱形代表拓撲金屬。陰影區域表示黃銅礦化合物的晶格常數在±2%範圍內與GaAs、InAs和InSb相匹配。 拓撲絕緣體已成為材料研究領域中的「明星」[Nature 466, 310 (2010)],吸引著眾多科學家的目光,理論和實驗兩方面的研究工作進展都極為迅速。
  • 極端光學研究團隊發現非厄米光子拓撲絕緣體拓撲相變規律
    北京大學物理學院、納光電子前沿科學中心、人工微結構和介觀物理國家重點實驗室「極端光學團隊」胡小永教授和龔旗煌院士等在非厄米拓撲光子學研究中取得重要進展:發現在二維PT對稱構型的耦合諧振環陣列光子拓撲絕緣體中存在拓撲相變,並且揭示了產生拓撲相變的內在條件:由耦合強度與增益損耗量共同決定的解析關係。
  • 【中國科學報】何珂:探秘拓撲絕緣體
    在「拓撲絕緣體」這一研究方向的指引下,何珂從未停止過探索的腳步,如今他正在與合作者努力在拓撲絕緣體薄膜中實現量子化反常霍爾效應回國以後,他開始探索一種新的材料:拓撲絕緣體。「自旋軌道耦合所產生的等效磁場具有另外一個作用,這就是可能改變某些材料中電子的拓撲性質,將這些材料變成一種特殊的絕緣體。這種絕緣體與普通的絕緣體——比如金剛石、陶瓷不同,由於其電子的拓撲性質,它總是具有導電的表面。這種絕緣體叫拓撲絕緣體。」
  • 進展|Z2非平庸節線半金屬和高階拓撲絕緣體研究取得重要進展
    拓撲材料的發現對新的拓撲態和新奇物性的研究具有重要的意義。高階拓撲絕緣體(higher-order topological insulators) 在這次搜索中也無處遁形。人們定義: 一階拓撲絕緣體具有絕緣的d維體態,但有(d-1)維拓撲保護的金屬表面態; 二階拓撲絕緣體具有絕緣的d維體態和(d-1)維表面態,但有(d-2)維拓撲保護的金屬稜態;以此類推。所以常規的三維拓撲絕緣體,又可以被稱為三維的一階拓撲絕緣體。
  • 磁性二階拓撲絕緣體
    二階拓撲絕緣體(SOTI)是拓撲材料領域新的研究熱點,與傳統的拓撲絕緣體(即一階拓撲絕緣體)不同,二階拓撲絕緣體的無能隙邊界態出現在
  • 拓撲絕緣體簡介
    三位科學家戴維·索利斯、鄧肯·霍爾丹、麥可·科斯特利茨,因為「理論發現拓撲相變和拓撲相物質」獲獎。本刊在2012年發表了清華大學物理系呂衍鳳、陳曦、薛其坤的撰文《拓撲絕緣體簡介》,現整理出來以微信版(略去了參考文獻)再現讀者。