2019年神經發育及成年神經再生十大研究突破
1. Nature—脊椎動物「新大腦「的進化依賴於神經嵴調節性神經環路的逐漸獲得
英文摘要:
The neural crest, an embryonic stem-cell population, is avertebrate innovation that has been proposed to be a key component of the 'newhead', which imbued vertebrates with predatory behaviour1,2. Here,to investigate how the evolution of neural crestcells affected the vertebrate body plan, we examined the molecular circuitsthat control neural crest developmentalong the anteroposterior axis of a jawless vertebrate, the sea lamprey. Geneexpression analysis showed that the cranial subpopulation of the neural crest of the lamprey lacks most components of atranscriptional circuit that is specific to the cranial neuralcrest in amniotes and confers the ability to form craniofacial cartilage ontonon-cranial neural crest subpopulations3.Consistent with this, hierarchical clustering analysis revealed that thetranscriptional profile of the lamprey cranial neuralcrest is more similar to the trunk neural crest ofamniotes. Notably, analysis of the cranial neuralcrest in little skate and zebrafish embryos demonstrated that thetranscriptional circuit that is specific to the cranial neuralcrest emerged via the gradual addition of network components to the neural crest of gnathostomes, which subsequently becamerestricted to the cephalic region. Our results indicate that the ancestral neural crest at the base of the vertebrate lineagepossessed a trunk-like identity. We propose that the emergence of the cranial neural crest, by progressive assembly of anaxial-specific regulatory circuit, allowed the elaboration of the new headduring vertebrate evolution.
參考文獻:
Martiket al (2019). Evolution of the new head by gradual acquisition of neural crestregulatory circuits. Nature. 2019 Oct;574(7780):675-678.
2. Science—研究揭示了人類小腦發育中原祖細胞區的時空擴張特徵
英文摘要:
Wepresent histological and molecular analyses of the developing human cerebellumfrom 30 days after conception to 9 months after birth. Differences indevelopmental patterns between humans and mice include spatiotemporal expansionof both ventricular and rhombic lip primary progenitor zones to includesubventricular zones containing basal progenitors. The human rhombic lippersists longer through cerebellar developmentthan in the mouse and undergoes morphological changes to form a progenitor poolin the posterior lobule, which is not seen in other organisms, not even in thenonhuman primate the macaque. Disruptions in human rhombic lip development are associated with posterior cerebellarvermis hypoplasia and Dandy-Walker malformation. The presence ofthese species-specific neural progenitorpopulations refines our insight into human cerebellar developmental disorders.
參考文獻:
Haldipuret al (2019). Spatiotemporal expansion of primary progenitor zones in thedeveloping human cerebellum. Science. 2019 Oct 25;366(6464):454-460.
3. Cell— 科學家開創了一種方法以研究胚胎發育過程中神經環路是如何湧現的
英文摘要:
Animalsurvival requires a functioning nervous system to develop during embryogenesis.Newborn neurons must assemble into circuits producing activity patterns capableof instructing behaviors. Elucidating how this process is coordinated requiresnew methods that follow maturation and activity of all cells across adeveloping circuit. We present an imaging method for comprehensivelytracking neuron lineages, movements, molecular identities, and activity in theentire developing zebrafish spinal cord, from neurogenesisuntil the emergence of patterned activity instructing the earliest spontaneousmotor behavior. We found that motoneurons are active first and form localpatterned ensembles with neighboring neurons. These ensembles merge,synchronize globally after reaching a threshold size, and finally recruitcommissural interneurons to orchestrate the left-right alternating patternsimportant for locomotion in vertebrates. Individual neurons undergo functionalmaturation stereotypically based on their birth time and anatomical origin. Ourstudy provides a general strategy for reconstructing how functioning circuitsemerge during embryogenesis.
參考文獻:
Wan et al (2019). Single-Cell Reconstruction of EmergingPopulation Activity in an Entire Developing Circuit. Cell. 2019 Oct3;179(2):355-372.e23.
4. Cell—在神經系統發育過程中,遷移的神經嵴細胞具有吞噬死亡細胞的功能
英文摘要:
Duringneural tube closure and spinal cord development, many cells die in both the central andperipheral nervous systems (CNS and PNS, respectively). However,myeloid-derived professional phagocytes have not yet colonized the trunk regionduring early neurogenesis. How apoptotic cells areremoved from this region during these stages remains largely unknown. Usinglive imaging in zebrafish, we demonstrate that neuralcrest cells (NCCs) respond rapidly to dying cells and phagocytose cellulardebris around the neural tube. Additionally, NCCshave the ability to enter the CNS through motor exit point transitionzones and clear debris in the spinal cord. Surprisingly, NCCs phagocytosismechanistically resembles macrophage phagocytosis and their recruitment towardcellular debris is mediated by interleukin-1β. Taken together, our resultsreveal a role for NCCs in phagocytosis of debris in the developing nervoussystem before the presence of professional phagocytes.
參考文獻:
Zhu et al (2019). Migratory Neural Crest CellsPhagocytose Dead Cells in the Developing Nervous System. Cell. 2019 Sep19;179(1):74-89.e10.
5. Nature—衰老大腦中侵潤的T細胞通過幹擾素-γ抑制成年神經新生
英文摘要:
Themammalian brain contains neurogenic niches that comprise neuralstem cells and other cell types. Neurogenic niches become less functional withage, but how they change during ageing remains unclear. Here we performsingle-cell RNA sequencing of young and old neurogenic niches in mice. Theanalysis of 14,685 single-cell transcriptomes reveals a decrease in activated neural stem cells, changes in endothelial cells andmicroglia, and an infiltration of T cells in old neurogenic niches. T cellsin old brains are clonally expanded and are generally distinct from those inold blood, which suggests that they may experience specific antigens. Tcells in old brains also express interferon-γ, and the subset of neural stem cells that has a high interferon responseshows decreased proliferation in vivo. We find that T cells can inhibit the proliferationof neural stem cells in co-cultures and in vivo,in part by secreting interferon-γ. Our study reveals an interaction betweenT cells and neural stem cells in old brains,opening potential avenues through which to counteract age-related decline inbrain function.
參考文獻:
Dulken et al (2019). Single-cell analysis reveals T cellinfiltration in old neurogenic niches. Nature. 2019 Jul;571(7764):205-210.
6. Science—研究揭示鼠神經嵴細胞細胞命運決定的時空結構特徵
英文摘要:
Neural crest cells are embryonic progenitors thatgenerate numerous cell types in vertebrates. With single-cell analysis, we showthat mouse trunk neural crest cells become biasedtoward neuronal lineages when they delaminate from the neuraltube, whereas cranial neural crest cells acquireectomesenchyme potential dependent on activation of the transcription factor Twist1.The choices that neural crest cells make to becomesensory, glial, autonomic, or mesenchymal cells can be formalized as a seriesof sequential binary decisions. Each branch of the decision tree involvesinitial coactivation of bipotential properties followed by gradual shiftstoward commitment. Competing fate programs are coactivated before cellsacquire fate-specific phenotypic traits. Determination of a specific fate isachieved by increased synchronization of relevant programs and concurrentrepression of competing fate programs.
參考文獻:
Soldatov et al (2019). Spatiotemporal structure of cellfate decisions in murine neural crest. Science. 2019 Jun 7;364(6444).
7. Nature—中樞神經系統中的神經幹細胞遷移到腫瘤中以促進腫瘤神經新生和腫瘤侵襲和復發
英文摘要:
Autonomicnerve fibres in the tumour microenvironment regulate cancer initiation anddissemination, but how nerves emerge in tumours is currently unknown. Here weshow that neural progenitors from the centralnervous system that express doublecortin (DCX+) infiltrate prostatetumours and metastases, in which they initiate neurogenesis.In mouse models of prostate cancer, oscillations of DCX+ neural progenitors in the subventricular zone-aneurogenic area of the central nervous system-are associated with disruption ofthe blood-brain barrier, and with the egress of DCX+ cells into thecirculation. These cells then infiltrate and reside in the tumour, andcan generate new adrenergic neurons. Selective genetic depletion of DCX+cells inhibits the early phases of tumour developmentin our mouse models of prostate cancer, whereas transplantation of DCX+neural progenitors promotes tumour growth andmetastasis. In humans, the density of DCX+ neuralprogenitors is strongly associated with the aggressiveness and recurrence ofprostate adenocarcinoma. These results reveal a unique crosstalk between thecentral nervous system and prostate tumours, and indicate neural targets for the treatment of cancer.
參考文獻:
Mauffrey et al(2019). Progenitors from the centralnervous system drive neurogenesis in cancer. Nature. 2019May;569(7758):672-678.
8. Cell—研究發現神經發育和成年神經新生可能均起源於相同的胚胎幹細胞
英文摘要:
Newneurons arise from quiescent adult neuralprogenitors throughout life in specific regions of the mammalian brain. Littleis known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give riseto proliferative Hopx+ neuralprogenitors in the primitive dentate region, and they, in turn, generategranule neurons, but not other neurons, throughout developmentand then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period.RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal,and adult dentate neural progenitors furtherreveal common molecular and epigenetic signatures and developmental dynamics.Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes todentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelongextension of development that maintains heightenedplasticity in the mammalian hippocampus.
參考文獻:
Berget al (2019). A Common Embryonic Origin of Stem Cells Drives Developmental andAdult Neurogenesis. Cell. 2019 Apr 18;177(3):654-668.e15.
9. Cell—靜息態使衰老大腦中的神經幹細胞保持其生存及再生能力
英文摘要:
Thefunction of somatic stem cells declines with age. Understanding the molecularunderpinnings of this decline is key to counteract age-related disease. Here,we report a dramatic drop in the neural stem cells(NSCs) number in the aging murine brain. We find that this smallerstem cell reservoir is protected from full depletion by an increase inquiescence that makes old NSCs more resistant to regenerate the injuredbrain. Once activated, however, young and old NSCs show similar proliferationand differentiation capacity. Single-cell transcriptomics of NSCs indicate thataging changes NSCs minimally. In the aging brain, niche-derived inflammatorysignals and the Wnt antagonist sFRP5 induce quiescence. Indeed, intervention toneutralize them increases activation of old NSCs during homeostasis andfollowing injury. Our study identifies quiescence as a key feature of old NSCsimposed by the niche and uncovers ways to activate NSCs to repair the agingbrain.
參考文獻:
Kalamakis et al (2019). Quiescence Modulates Stem CellMaintenance and Regenerative Capacity in the Aging Brain. Cell. 2019 Mar7;176(6):1407-1419.e14.
10. Cell—科學家發現腦類器官是研究人類特異性腦進化的模型
英文摘要:
Directcomparisons of human and non-human primate brains can reveal molecular pathwaysunderlying remarkable specializations of the human brain. However, chimpanzeetissue is inaccessible during neocortical neurogenesiswhen differences in brain size first appear. To identify human-specificfeatures of cortical development, weleveraged recent innovations that permit generating pluripotent stemcell-derived cerebral organoids from chimpanzee. Despite metabolicdifferences, organoid models preserve gene regulatory networks related toprimary cell types and developmental processes. We further identified 261differentially expressed genes in human compared to both chimpanzeeorganoids and macaque cortex, enriched for recent gene duplications, andincluding multiple regulators of PI3K-AKT-mTOR signaling. We observedincreased activation of this pathway in human radial glia, dependent on tworeceptors upregulated specifically in human: INSR and ITGB8. Our findingsestablish a platform for systematic analysis of molecular changes contributingto human brain development and evolution.
參考文獻:
Pollen et al (2019). Establishing Cerebral Organoids asModels of Human-Specific Brain Evolution. Cell. 2019 Feb 7;176(4):743-756.e17.
2019年十大研究進展名錄
1. 年終盤點:2019年帕金森病十大基礎研究進展
2. 年終盤點:2019年帕金森病十大臨床研究進展
3. 年終盤點:2019年阿爾茨海默病十大基礎研究進展
4. 年終盤點:2019年阿爾茨海默病十大臨床研究進展
5. 年終盤點:2019年神經科學領域十大基礎研究進展
6. 年終盤點:2019年抑鬱症領域十大基礎研究進展(一半來自中國)
7. 年終盤點:2019年腦血管病領域十大基礎研究進展
8. 年終盤點:2019年神經炎症領域十大基礎研究進展
9. 年終盤點:2019年神經活動記錄十大基礎研究進展
10. 年終盤點:2019年ALS/FTD十大基礎研究進展
11. 年終盤點:2019年醫學和生物學領域深度學習和神經網絡十大基礎研究進展
12. 年終盤點:2019年神經內科十大臨床研究突破
13. 年終盤點:2019年疼痛防治和痛覺機制十大研究突破
14. 年終盤點:2019年睡眠和失眠領域十大研究突破
2018年十大研究進展名錄
1.盤點2018年阿爾茨海默病十大研究突破
2.盤點2018年帕金森病十大研究突破
3. 盤點2018年神經科學二十大研究突破
4. 盤點2018年漸凍症(ALS)十大研究進展
5. 盤點2018年全球腦卒中十大研究進展
6. 盤點2018年神經影像十大研究進展
7. 盤點2018年神經炎症領域的十大研究突破
8. 盤點2018年神經變性痴呆十大研究突破
9. 2018年神經科學「學習和記憶」領域十大研究進展
10. 2018年抑鬱症領域的十大研究突破
11. 2018年痛覺和疼痛領域的十大研究突破
12. 2018年的神經幹細胞研究十大研究進展
13. 2018年的神經幹細胞研究十大研究進展
14. 2018年的十大睡眠研究突破
15. 2018年「衰老和長生不老」領域的十大研究突破
16. 2018年自閉症領域的十大研究突破
歡迎加入60個「神經科學臨床和基礎社群」
1、神經科學臨床和基礎主群(500人)已滿;
2、神經科學臨床和基礎Alzheimer亞群;
3、神經科學臨床和基礎Parkinson亞群;
4、神經科學臨床和基礎cerebrovascular亞群;
5、神經科學臨床和基礎Depression亞群;
6、神經科學臨床和基礎Movement disorders亞群;
7、神經科學臨床和基礎Neuroimmunology亞群;
8、神經科學臨床和基礎Psychiatry亞群;
9、神經科學臨床和基礎Neuroimaging亞群;
10、神經科學臨床和基礎Neurogenetics亞群;
11、神經科學臨床和基礎Neurodegeneration亞群;
12、神經科學臨床和基礎Epilepsy亞群;
13、神經科學臨床和基礎Sleep亞群;
14、神經科學臨床和基礎Neural Development亞群;
15、神經科學臨床和基礎Electrophysiology亞群;
16、神經科學臨床和基礎Neural circuits亞群;
17、神經科學臨床和基礎神經調控和腦機接口亞群;
18、神經科學臨床和基礎人工智慧亞群;
19、神經科學臨床和基礎重大疾病和疑難病亞群;
20、神經科學臨床和基礎衰老和永生亞群;
21、神經科學臨床和基礎周圍神經病群;
22、神經科學臨床和基礎神經肌肉疾病群;
23、神經科學臨床和基礎視覺系統研究群;
24、神經科學臨床和基礎疼痛研究群;
25、神經科學臨床和基礎Emotion研究群;
26、神經科學臨床和基礎意識研究群;
27、神經科學臨床和基礎Learning & Memory亞群;
28、神經科學國自然基金申請交流群;
29、神經科學ALS/FTD交流群;
30、神經科學腦外傷和脊髓外傷研究群;
31、神經科學兒科神經病學交流群;
32、神經科學Autism & ADHD研究群;
33、神經科學大數據和組學研究群;
34、神經科學非編碼RNA研究群;
35、神經科學schizophrenia研究群;
36、神經科學Non-human primate研究群;
37、神經科學神經損傷與修復研究群;
38、神經科學Epigenetics研究群;
39、神經科學神經介入和靜脈溶栓亞群;
40、神經科學計算神經科學亞群;
41、神經科學基因治療交流群;
42、神經科學細胞治療交流群;
43、神經科學納米藥物治療交流群;
44、神經科學中醫藥治療交流群;
45、神經科學免疫調節治療交流群;
46、神經科學類器官和類腦研究交流群;
47、神經科學語言研究交流群;
48、神經科學深度學習和神經網絡交流群;
49、神經科學類神經元和類腦器件設計交流群;
50、神經科學半人半機器人交流群;
51、神經科學感染性疾病研究群;
52、神經科學神經系統腫瘤研究群;
53、神經科學星型和小膠質細胞研究群;
54、神經科學神經外科研究群;
55、神經科學系統論和複雜性研究交流群;
56、神經科學腦腸軸和Microbiota交流群;
57、神經科學虛擬實境、增強現實和混合現實交流群;
58、神經科學臨床試驗和流行病學研究交流群;
59、神經科學單細胞測序研究交流群;
60、神經科學蛋白質解析交流群。
如果想入群,請加我微信(qingyierjing),並回復要加入的群,我會將您拉入群中。
20個神經科學領域的突破可能獲得諾貝爾獎
1. 意識研究:意識的本質、組成、運行機制及其物質載體;不同意識層次的操控和幹預,意識障礙性疾病的治療。
2. 學習和記憶的機制及其調控:記憶的形成和消退機制,記憶的人為移植和記憶的人為消除等;
3. 痴呆研究:阿爾茨海默病的機制和治療研究,血管性痴呆、額顳葉痴呆、路易體痴呆的機制研究和治療。
4. 睡眠和睡眠障礙的機制和幹預研究。
5. 情緒研究:喜、怒、哀、恐等基本情緒的機制和相關疾病的治療。
6. 計算和邏輯推理的神經科學基礎研究。
7. 語言的神經科學基礎研究。
8. 視覺圖像形成和運用的神經科學基礎研究。
9. 創造力、想像力和藝術文學創造的神經基礎研究。
10. 痛覺的神經科學基礎及其幹預研究
11. 性行為研究:性行為的神經科學基礎研究和性行為的調控和幹預。
12. 腦和脊髓損傷的機制及其幹預研究,包括腦卒中、脊髓損傷機制研究,神經幹細胞移植研究,新型神經修復技術,神經康復技術。
13. 精神類疾病的機制和幹預研究:自閉症、精分、抑鬱症、智能障礙、藥物成癮等;
14. 運動神經元病等神經變性病機制研究及其幹預。
15. 衰老的機制和永生研究,包括大腦衰老的機制和壽命延長研究。
16. 神經系統遺傳病的機制研究及基因治療。
17. 神經操縱和調控技術:光遺傳技術、藥物遺傳技術、基因編輯技術、經顱磁刺激、深部腦刺激和電刺激等。
18. 腦組織兼容性電子微晶片及腦機互動裝置研究,包括腦機接口、神經刺激晶片、記憶存儲晶片,意識存儲晶片,人腦非語言互動裝置等。
19. 半人半機器人的設計、完善和修復技術:包括任何機械肢體的人類移植,大腦移植入機器體內等。
20. 新型大腦成像和神經元活動記錄技術:高解析度成像技術、大型電極微陣列技術等。