看了本文你還不懂傅立葉變換,那就來掐死我吧

2021-01-17 觀察者網

這篇文章的核心思想就是:

要讓讀者在不看任何數學公式的情況下理解傅立葉分析。

傅立葉分析不僅僅是一個數學工具,更是一種可以徹底顛覆一個人以前世界觀的思維模式。但不幸的是,傅立葉分析的公式看起來太複雜了,所以很多大一新生上來就懵圈並從此對它深惡痛絕。老實說,這麼有意思的東西居然成了大學裡的殺手課程,不得不歸咎於編教材的人實在是太嚴肅了。(您把教材寫得好玩一點會死嗎?會死嗎?)所以我一直想寫一個有意思的文章來解釋傅立葉分析,有可能的話高中生都能看懂的那種。所以,不管讀到這裡的您從事何種工作,我保證您都能看懂,並且一定將體會到通過傅立葉分析看到世界另一個樣子時的快感。至於對於已經有一定基礎的朋友,也希望不要看到會的地方就急忙往後翻,仔細讀一定會有新的發現。

————以上是定場詩————

下面進入正題:

抱歉,還是要囉嗦一句:其實學習本來就不是易事,我寫這篇文章的初衷也是希望大家學習起來更加輕鬆,充滿樂趣。但是千萬!千萬不要把這篇文章收藏起來,或是存下地址,心裡想著:以後有時間再看。這樣的例子太多了,也許幾年後你都沒有再打開這個頁面。無論如何,耐下心,讀下去。這篇文章要比讀課本要輕鬆、開心得多……

一、啥叫頻域

從我們出生,我們看到的世界都以時間貫穿,股票的走勢、人的身高、汽車的軌跡都會隨著時間發生改變。這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。但如果我告訴你,用另一種方法來觀察世界的話,你會發現世界是永恆不變的,你會不會覺得我瘋了?我沒有瘋,這個靜止的世界就叫做頻域。

先舉一個公式上並非很恰當,但意義上再貼切不過的例子:

在你的理解中,一段音樂是什麼呢?

這是我們對音樂最普遍的理解,一個隨著時間變化的震動。但我相信對於樂器小能手們來說,音樂更直觀的理解是這樣的:

好的!下課,同學們再見。

是的,其實這一段寫到這裡已經可以結束了。上圖是音樂在時域的樣子,而下圖則是音樂在頻域的樣子。所以頻域這一概念對大家都從不陌生,只是從來沒意識到而已。

現在我們可以回過頭來重新看看一開始那句痴人說夢般的話:世界是永恆的。

將以上兩圖簡化:

時域:

頻域:

在時域,我們觀察到鋼琴的琴弦一會上一會下的擺動,就如同一支股票的走勢;而在頻域,只有那一個永恆的音符。

所以,你眼中看似落葉紛飛變化無常的世界,實際只是躺在上帝懷中一份早已譜好的樂章。

抱歉,這不是一句雞湯文,而是黑板上確鑿的公式:傅立葉同學告訴我們,任何周期函數,都可以看作是不同振幅,不同相位正弦波的疊加。在第一個例子裡我們可以理解為,利用對不同琴鍵不同力度,不同時間點的敲擊,可以組合出任何一首樂曲。

而貫穿時域與頻域的方法之一,就是傳中說的傅立葉分析。傅立葉分析可分為傅立葉級數(Fourier Serie)和傅立葉變換(Fourier Transformation),我們從簡單的開始談起。

 

二、傅立葉級數(Fourier Series)

還是舉個慄子(舉個例子)並且有圖有真相才好理解。

如果我說我能用前面說的正弦曲線波疊加出一個帶 90 度角的矩形波來,你會相信嗎?你不會,就像當年的我一樣。但是看看下圖:

第一幅圖是1個(鬱悶的)正弦波 cos(x)

第二幅圖是 2 個(賣萌的)正弦波的疊加 cos (x) +a.cos (3x)

第三幅圖是 4 個(發春的)正弦波的疊加

第四幅圖是 10 個(便秘的)正弦波的疊加

隨著正弦波數量逐漸的增長,他們最終會疊加成一個標準的矩形,大家從中體會到了什麼道理?

隨著疊加的遞增,所有正弦波中上升的部分逐漸讓原本緩慢增加的曲線不斷變陡,而所有正弦波中下降的部分又抵消了上升到最高處時繼續上升的部分使其變為水平線。一個矩形就這麼疊加而成了。但是要多少個正弦波疊加起來才能形成一個標準 90 度角的矩形波呢?不幸的告訴大家,答案是無窮多個。(上帝:我能讓你們猜著我?)

不僅僅是矩形,你能想到的任何波形都是可以如此方法用正弦波疊加起來的。這是沒有接觸過傅立葉分析的人在直覺上的第一個難點,但是一旦接受了這樣的設定,遊戲就開始有意思起來了。

還是上圖的正弦波累加成矩形波,我們換一個角度來看看:

在這幾幅圖中,最前面黑色的線就是所有正弦波疊加而成的總和,也就是越來越接近矩形波的那個圖形。而後面依不同顏色排列而成的正弦波就是組合為矩形波的各個分量。這些正弦波按照頻率從低到高從前向後排列開來,而每一個波的振幅都是不同的。一定有細心的讀者發現了,每兩個正弦波之間都還有一條直線,那並不是分割線,而是振幅為 0 的正弦波!也就是說,為了組成特殊的曲線,有些正弦波成分是不需要的。

這裡,不同頻率的正弦波我們成為頻率分量。

好了,關鍵的地方來了!!

如果我們把第一個頻率最低的頻率分量看作「1」,我們就有了構建頻域的最基本單元。

對於我們最常見的有理數軸,數字「1」就是有理數軸的基本單元。

(好吧,數學稱法為——基。在那個年代,這個字還沒有其他奇怪的解釋,後面還有正交基這樣的詞彙我會說嗎?)

時域的基本單元就是「1 秒」,如果我們將一個角頻率為的正弦波 cos(t)看作基礎,那麼頻域的基本單元就是。

有了「1」,還要有「0」才能構成世界,那麼頻域的「0」是什麼呢?cos(0t)就是一個周期無限長的正弦波,也就是一條直線!所以在頻域,0 頻率也被稱為直流分量,在傅立葉級數的疊加中,它僅僅影響全部波形相對於數軸整體向上或是向下而不改變波的形狀。

 

接下來,讓我們回到初中,回憶一下已經死去的八戒,啊不,已經死去的老師是怎麼定義正弦波的吧。

正弦波就是一個圓周運動在一條直線上的投影。所以頻域的基本單元也可以理解為一個始終在旋轉的圓。

介紹完了頻域的基本組成單元,我們就可以看一看一個矩形波,在頻域裡的另一個模樣了:

這是什麼奇怪的東西?

 

這就是矩形波在頻域的樣子,是不是完全認不出來了?教科書一般就給到這裡然後留給了讀者無窮的遐想,以及無窮的吐槽,其實教科書只要補一張圖就足夠了:頻域圖像,也就是俗稱的頻譜,就是——

再清楚一點:

可以發現,在頻譜中,偶數項的振幅都是0,也就對應了圖中的彩色直線。振幅為 0 的正弦波。

老實說,在我學傅立葉變換時,維基的這個圖還沒有出現,那時我就想到了這種表達方法,而且,後面還會加入維基沒有表示出來的另一個譜——相位譜。

但是在講相位譜之前,我們先回顧一下剛剛的這個例子究竟意味著什麼。記得前面說過的那句「世界是靜止的」嗎?估計好多人對這句話都已經吐槽半天了。想像一下,世界上每一個看似混亂的表象,實際都是一條時間軸上不規則的曲線,但實際這些曲線都是由這些無窮無盡的正弦波組成。我們看似不規律的事情反而是規律的正弦波在時域上的投影,而正弦波又是一個旋轉的圓在直線上的投影。那麼你的腦海中會產生一個什麼畫面呢?

我們眼中的世界就像皮影戲的大幕布,幕布的後面有無數的齒輪,大齒輪帶動小齒輪,小齒輪再帶動更小的。在最外面的小齒輪上有一個小人——那就是我們自己。我們只看到這個小人毫無規律的在幕布前表演,卻無法預測他下一步會去哪。而幕布後面的齒輪卻永遠一直那樣不停的旋轉,永不停歇。這樣說來有些宿命論的感覺。說實話,這種對人生的描繪是我一個朋友在我們都是高中生的時候感嘆的。

相關焦點

  • 如果看了這篇文章你還不懂傅立葉變換,那就過來掐死我吧(下)
    上一篇文章發出來之後,為了掐死我,大家真是很下工夫啊,有拿給姐姐看的,有拿給妹妹看的,還有拿給女朋友看的,就是為了聽到一句「完全看不懂啊」。幸虧我留了個心眼,不然就真的像標題配圖那樣了。我的文章題目是,如果看了這篇文章你「還」不懂就過來掐死我,潛臺詞就是在你學了,但是沒學明白的情況下看了還是不懂,才過來掐死我。
  • 不看任何數學公式來講解傅立葉變換
    今天我們再次給大家整理重發一篇去年分享過的《不看任何數學公式來講解傅立葉變換》一文,來增進大家的理解。無論聽廣播還是看電視,我們一定對一個詞不陌生——頻道。頻道頻道,就是頻率的通道,不同的頻道就是將不同的頻率作為一個通道來進行信息傳輸。下面大家嘗試一件事:  先在紙上畫一個 sin(x),不一定標準,意思差不多就行。不是很難吧。  好,接下去畫一個 sin(3x)+sin(5x)的圖形。  別說標準不標準了,曲線什麼時候上升什麼時候下降你都不一定畫的對吧?
  • 傅立葉變換看不懂,5分鐘教你快速理解!
    傅立葉變換那麼接下來我就來教各位如何讓自己 8 歲的兒子可以簡單了解什麼是傅立葉變換!一下子,傅立葉變換的重要性就立馬凸顯了起來。那麼我們就正式開始切入正題,我們這裡只是簡單了解一下傅立葉變換的基礎定義與內容,不涉及傅立葉級數、離散時間傅立葉變換之類的。首先知識點先排除,什麼是正餘弦波,首先,直角三角形中,∠C=90°;任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,也就是sinA=a/c。
  • 完全搞懂傅立葉變換和小波(1)——總綱
    本文引用地址:http://www.eepw.com.cn/article/201702/344594.htm  完全搞懂傅立葉變換和小波,你至少需要知道哪些預備知識?主頁君從今天開始就將通過一些列文章告訴你他們之間的來龍去脈!本節是全部系列文章的第一節——總綱,日後我們也將按照這個思路一點一點講述所有的知識。
  • 完全搞懂傅立葉變換和小波(4)——歐拉公式及其證明
    這一系列的文章中間中斷了很久,很多朋友也留言希望我繼續連載完,遂「重拾舊河山」,希望如果有時間能夠把它做完。本文引用地址:http://www.eepw.com.cn/article/201703/345196.htm  本節我們介紹歐拉公式,它是複變函數中非常重要的一個定理,同時對於傅立葉變換的理解也必不可少。我們在高等數學裡學習的傅立葉級數通常都是用三角函數形式表示的,而傅立葉變換中的一般都是用冪指數形式的,歐拉公式的作用正是把三角函數與e的冪指數聯繫到一起。
  • 神作:深入淺出傅立葉變換
    ——更新於2014.6.6,想直接看更新的同學可以直接跳到第四章—— 這篇文章的核心思想就是:我保證這篇文章和你以前看過的所有文章都不同,這是 2012 年還在果殼的時候寫的,但是當時沒有來得及寫完就出國了……於是拖了兩年,嗯,我是拖延症患者…… 要讓讀者在不看任何數學公式的情況下理解傅立葉分析
  • 傅立葉變換終極解釋
    這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。但如果我告訴你,用另一種方法來觀察世界的話,你會發現世界是永恆不變的,你會不會覺得我瘋了?我沒有瘋,這個靜止的世界就叫做頻域。
  • 完全搞懂傅立葉變換和小波(6)——傅立葉級數展開之函數項級數的性質
    上一小節中我們介紹了函數項級數的概念,這一節我們來討論函數項級數的性質。傅立葉級數是一種函數項(三角函數)級數,本質上來說,一幅圖像(或者一組信號)就是一個函數,我們研究圖像的傅立葉變換,就是要探討如何將圖像函數用三角函數進行展開。所以如果要徹底搞清楚傅立葉變換,那麼討論函數項級數的性質是非常有必要的。在此基礎上,我們將引入傅立葉級數的概念。
  • 完全搞懂傅立葉變換和小波(5)——傅立葉級數展開之函數項級數的概念
    1.4 傅立葉級數展開本文引用地址:http://www.eepw.com.cn/article/201703/345383.htm  之前我們在介紹泰勒展開式的時候提到過傅立葉級數。
  • 完全搞懂傅立葉變換和小波(3)——泰勒公式及其證明
    書接上文,之前我們介紹了高等數學裡的三個中值定理,本節我們繼續按照總綱的思路,用柯西中值定理來證明泰勒公式。這是我們循序漸進引出傅立葉的最後一項任務,完成這一步的學習之後,你就可以從級數的角度,了解傅立葉的意義了。
  • 作為大學生,你竟然不懂得傅立葉變換
    傅立葉變換能將滿足一定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。作為一個大學生,這是你應該具備的最基本的知識,如果你還不懂,就趕快跟著小編的思路,來學一學傅立葉變換吧!一.為了方便理解傅立葉變換,首先,我調用了zeros()函數返回一個900乘900的矩陣,然後對一個矩形區域進行1的賦值,得到了一個簡單的圖像,即原始圖像1。
  • 深入淺出的學習傅立葉變換
    事實上,許多數學功底好的數位訊號處理專業的同學也不一定理解傅立葉變換的真實含義,不能做到學以致用!本文引用地址:http://www.eepw.com.cn/article/272577.htm  事實上,傅立葉變換的相關運算已經非常成熟,有現成函數可以調用。對於絕大部分只需用好傅立葉變換的同學,重要的不是去記那些枯燥的公式,而是解傅立葉變換的含義及意義。
  • 傅立葉變換,拉普拉斯變換和Z變換的意義
    簡介:本文介紹了在實際工程中常用到的傅立葉變換和Z變換之間的關係、各自的意義等內容。本文引用地址:http://www.eepw.com.cn/article/280827.htm  傅立葉變換在物理學、數論、組合數學、信號處理、概率論、統計學、密碼學、聲學、光學、海洋學、結構動力學等領域都有著廣泛的應用(例如在信號處理中,傅立葉變換的典型用途是將信號分解成幅值分量和頻率分量)。
  • 著名的傅立葉變換圖
    上期我們談論了三角函數,但是說三角函數怎麼好意思不提那套著名的傅立葉變換圖呢?  所以:  變身吧傅立葉  不,不是變成夜禮服。    這裡展示的傅立葉變換(的三角函數形式)的基本原理是,多個正餘弦波疊加(藍色)可以用來近似任何一個原始的周期函數(紅色)。這樣近似的效果有點像稱量的砝碼:不管你原物的質量多奇怪,我總能化歸成「5個1斤砝碼、3個1兩砝碼」這樣幾個基本單位之和。上圖末尾處藍色的豎線就可以想像成「我用了5個1號波、3個2號波」等等。
  • 完全搞懂傅立葉變換和小波(2)——三個中值定理
    當然如果你需要對傅立葉變換有一個更深刻的認識,或者說從數學角度一點一滴完全搞懂它,為了體系的完整性,這部分知識還是必須的。本文引用地址:http://www.eepw.com.cn/article/201703/344766.htm  上篇文章連結地址:完全搞懂傅立葉變換和小波(1)——總綱  http://www.eepw.com.cn/article/201702/344594.htm  由於公式較多,這裡只能貼圖啦。
  • 傅立葉變換算法(一)
    ,讓各位對其有個總體大概的印象,也順便看看傅立葉變換所涉及到的公式,究竟有多複雜:以下就是傅立葉變換的4種變體連續傅立葉變換   一般情況下,若「傅立葉變換」一詞不加任何限定語,則指的是「連續傅立葉變換」。
  • 傅立葉變換、拉氏變換、z變換的含義
    傅立葉變換的實質是將一個信號分離為無窮多多正弦/復指數信號的加成,也就是說,把信號變成正弦信號相加的形式——既然是無窮多個信號相加,那對於非周期信號來說,每個信號的加權應該都是零——但有密度上的差別,你可以對比概率論中的概率密度來思考一下——落到每一個點的概率都是無限小,但這些無限小是有差別的。所以,傅立葉變換之後,橫坐標即為分離出的正弦信號的頻率,縱坐標對應的是加權密度。
  • 傅立葉變換、拉氏變換、z變換的含義到底是什麼?
    傅立葉變換的實質是將一個信號分離為無窮多多正弦/復指數信號的加成,也就是說,把信號變成正弦信號相加的形式——既然是無窮多個信號相加,那對於非周期信號來說,每個信號的加權應該都是零——但有密度上的差別,你可以對比概率論中的概率密度來思考一下——落到每一個點的概率都是無限小,但這些無限小是有差別的。
  • 大神總結:傅立葉連續、離散變換
    還記得傅立葉級數公式嗎?傅立葉級數公式就是這就是離散傅立葉變換的公式了。那麼離散傅立葉逆變換的公式又是怎樣呢,我們可以根據連續傅立葉逆變換的公式來寫出。首先給出連續傅立葉逆變換的公式:來開始推導正變換公式的,如果我用推導的話,那麼可以很容易想到1/N將不會出現在正變換公式裡。以上推導講完了,那麼究竟離散傅立葉變換和連續傅立葉變換有什麼關係呢?
  • 對傅立葉變換、拉氏變換、z變換詳細剖析
    ——但有密度上的差別,你可以對比概率論中的概率密度來思考一下——落到每一個點的概率都是無限小,但這些無限小是有差別的。傅立葉變換把信號由時域轉為頻域,因此把不同頻率的信號在時域上拼接起來進行傅立葉變換是沒有意義的——實際情況下,我們隔一段時間採集一次信號進行變換,才能體現出信號在頻域上隨時間的變化。我的語言可能比較晦澀,但我已盡我所能向你講述我的一點理解——真心希望能對你有用。