為什麼PCB上的單端阻抗控制50歐姆

2020-11-23 電子產品世界

  很多剛接觸阻抗的人都會有這個疑問,為什麼常見的板內單端走線都是默認要求按照50歐姆來管控而不是40歐姆或者60歐姆?這是一個看似簡單但又不好回答的問題。在寫這篇文章前我們也查找了很多資料,其中最有知名度的是Howard Johnson, PhD關於此問題的答覆,相信很多人都有看過。

本文引用地址:http://www.eepw.com.cn/article/201903/398229.htm

  為什麼說不好回答呢?信號完整性問題本身就是一個權衡取捨的問題,所以在業內最著名的一句話也就是:"It depends……" 這就是沒有標準答案,仁者見仁智者見智的一個問題。今天高速先生也就這個問題綜合各種答覆來簡單總結下,在此也是拋磚引玉,希望更多的人可以從各自的角度出發總結出更多相關的因素。

  首先,50歐姆是有一定歷史淵源的,這得從標準線纜說起。我們都知道近代電子技術很大一部分是來源於軍隊,慢慢的軍用轉為民用,在微波應用的初期,二次世界大戰期間,阻抗的選擇完全依賴於使用的需要。隨著技術的進步,需要給出阻抗標準,以便在經濟性和方便性上取得平衡。在美國,最多使用的導管是由現有的標尺竿和水管連接成的,51.5歐姆十分常見,但看到和用到的適配器/轉換器又是50歐姆到51.5歐姆;為聯合陸軍和海軍解決這些問題,一個名為JAN的組織成立了,就是後來的DESC,由MIL特別發展的,綜合考慮後最終選擇了50歐姆,並且特別的導管被製造出來,並由此轉化為各種線纜的標準。此時歐洲標準是60歐姆,不久以後,在象Hewlett-Packard這樣在業界佔統治地位的公司的影響下,歐洲人也被迫改變了,所以50歐姆最終成為業界的一個標準沿襲下來,也就變成約定俗成了,而和各種線纜連接的PCB,為了阻抗的匹配,最終也是按照50歐姆阻抗標準來要求了。

  其次,從線路板製作可實現的角度出發,50歐姆實現起來比較方便。從前面阻抗計算公式可知,過低的阻抗需要較寬的線寬以及薄介質(或較大的介電常數),這對於目前高密板來說空間上比較難滿足;過高的阻抗又需要較細的線寬及較厚的介質(或較小的介電常數),不利於EMI及串擾的抑制,同時對於多層板及從量產的角度來講加工的可靠性會比較差;而50歐姆在常用材料的環境下普通的線寬和介質厚度(4~6mil)即符合設計要求(如下圖一阻抗計算),又方便加工,慢慢的成為默認選擇也就不足為奇了。

  第三,從損耗的角度出發,根據基本的物理學可以證明50歐姆阻抗趨膚效應損耗最小(摘自Howard Johnson, PhD的回覆)。通常電纜的趨膚效應損耗L(以分貝做單位)和總的趨膚效應電阻R(單位長度)除以特性阻抗Z0成正比。總的趨膚效應電阻R是屏蔽層和中間導體電阻之和。屏蔽層的趨膚效應電阻在高頻時,和它的直徑d2成反比。同軸電纜內部導體的趨膚效應電阻在高頻時,和他的直徑d1成反比。總共的串聯電阻R,因此和(1/d2+1/d1)成正比。綜合這些因素,給定d2和相應的隔離材料的介電常數Er,可以用以下公式來使得趨膚效應損耗最小。

  在任何關於電磁場和微波的基礎書中,都可以找到Z0是d2,d1和Er的函數。

  把公式2代入公式1中,分子分母同時乘以d2,整理得到

  從公式3分離出常數項( /60)*(1/d2),有效的項((1+d2/d1)/ln(d2/d1))來確定最小值點。仔細查看公式3的最小值點僅由d2/d1控制,和Er以及固定值d2無關。以d2/d1為參數,為L做圖,顯示d2/d1=3.5911時,取得最小值。假定固態聚乙烯的介電常數為2.25,d2/d1=3.5911 得出特性阻抗為51.1歐姆。很久之前,無線電工程師為了方便使用,把這個值近似為50歐姆作為同軸電纜最優值。這證明了在50歐姆附近,L是最小的。

  最後,從電氣性能的角度看,50歐姆的優勢也是綜合考慮之後的折中。單純從PCB走線的性能來說,阻抗低比較好,對一個給定線寬的傳輸線,和平面距離越近,相應的EMI會減小,串擾也會因此減小,同時也不易受容性負載影響。但從全路徑的角度看,還需要考慮最關鍵的一個因素,那就是晶片的驅動能力,早期大多數晶片驅動不了阻抗小於50歐姆的傳輸線,而更高阻抗的傳輸線由於實現起來不便,所以折中採用了50歐姆阻抗。

  綜上所述:50歐姆作為業界的默認值有其先天的優勢,同時也是綜合考慮後的折中方案,但並不是說就一定要用50歐姆阻抗了,很多時候還是取決於與之匹配的接口,如75歐姆仍然是遠程通訊的標準,一些線纜和天線都是使用的75歐姆,此時就需要與之匹配的PCB線路阻抗。另外還有一些特殊的晶片通過改善晶片驅動能力,來降低傳輸線的阻抗,以此得到更好的抑制EMI和串擾的效果,如Intel的多數晶片要求阻抗控制在37歐姆、42歐姆甚至更低,在此不再贅述。


相關焦點

  • 為什麼PCB上單端阻抗控制50歐姆,為什麼常規是10%的偏差?
    很多剛接觸阻抗的人都會有這個疑問,為什麼常見的板內單端走線都是默認要求按照50歐姆來管控而不是40歐姆或者60歐姆?這是一個看似簡單但又不好回答的問題。為什麼說不好回答呢?阻抗系列第二部曲來了,本系列文章中有幾篇當時刷新了最高的閱讀量,好文有口碑就傳開了……最後祝大家2018新春快樂!闔家幸福!01為什麼PCB上的單端阻抗控制50歐姆→點擊查看←很多剛接觸阻抗的人都會有這個疑問,為什麼常見的板內單端走線都是默認要求按照50歐姆來管控而不是40歐姆或者60歐姆?
  • pcb版圖的阻抗控制怎麼計算
    特性阻抗,體現在PCB板上,主要是通過疊層、線寬、線距。在PCB版圖布局完成以後,我們要對PCB板進行層疊設計,將PCB板按照一定的厚度疊好以後,根據層疊結構,通過SI9000這個軟體來進行阻抗線寬的計算,然後根據計算好的線寬來進行布線,即可達到控制特性阻抗的效果。
  • 關於PCB的阻抗控制
    沒有阻抗控制的話,將引發相當大的信號反射和信號失真,導致設計失敗。常見的信號,如PCI總線、PCI-E總線、USB、乙太網、DDR內存、LVDS信號等,均需要進行阻抗控制。阻抗控制最終需要通過PCB設計實現,對PCB板工藝也提出更高要求,經過與PCB廠的溝通,並結合EDA軟體的使用,按照信號完整性要求去控制走線的阻抗。
  • 為什麼將射頻傳輸線的特性阻抗設定在50歐姆?
    本文轉載自【微信公眾號:通信百科,ID:Txbaike】經微信公眾號授權轉載,如需轉載與原文作者聯繫我們在安裝的RF設備(例如放大器,濾波器,耦合器等)時,上面的RF PCB或者遇到RF同軸電纜時,可能您都知道它們的傳輸線阻抗需要保持在50歐姆。這也被稱為傳輸線的特性阻抗。
  • 為了信號完整性,如何控制PCB的控制走線阻抗?
    沒有阻抗控制的話,將引發相當大的信號反射和信號失真,導致設計失敗。常見的信號,如PCI總線、PCI-E總線、USB、乙太網、DDR內存、LVDS信號等,均需要進行阻抗控制。阻抗控制最終需要通過PCB設計實現,對PCB板工藝也提出更高要求,經過與PCB廠的溝通,並結合EDA軟體的使用,按照信號完整性要求去控制走線的阻抗。本文引用地址:http://www.eepw.com.cn/article/201807/389726.htm  不同的走線方式都是可以通過計算得到對應的阻抗值。
  • RF中的阻抗匹配和50歐姆是怎麼來的?
    ,很多時候都是用50歐姆的阻抗(有時候這個值甚至就是PCB板的預設值) ,為什麼不是60或者是70歐姆呢?其中,30歐姆的同軸電纜可以傳輸的功率是最大的,77歐姆的同軸電纜傳輸信號的損耗是最小的。30歐姆和77歐姆的算術平均值為53.5歐姆,30歐姆和77歐姆的幾何平均值是48歐姆,我們經常所說的50歐姆系統阻抗其實是53.5歐姆和48歐姆的一個工程上的折中考慮,考慮最大功率傳輸和最小損耗儘可能同時滿足。
  • PCB設計之阻抗匹配設計方案
    適用於大部分PCB供應商的製程工藝標準和具有阻抗控制要求的PCB板設計。90歐姆差分阻抗推薦設計線寬、間距 6/6/6mil差分對與對之間距離≥12mil(3W準則)要領:在差分對走線較長情況下,USB的差分線建議兩邊按6mil的間距包地以降 低EMI風險(包地與不包地,線寬線距標準一致)。
  • 影響PCB特性阻抗的因素有哪些?
    其壓合後的厚度與壓機的平整性、壓板的程序有關;對所使用的任何一種板材,要取得其可生產的介質層厚度,利於設計計算,而工程設計、壓板控制、來料公差是介質厚度控制的關鍵。第二個:線寬,增加線寬,可減小阻抗,減小線寬可增大阻抗。
  • 阻抗板加工的阻抗控制
    在阻抗板加工處理中,如果有信號傳輸,則期望當信號從電源傳輸到接收機時,沒有任何反射,就可以傳輸到接收機而沒有任何反射,前提是能量損失小。要發生這種傳輸,電路中的阻抗必須等於發射機內部的阻抗,才能稱為「阻抗匹配」。
  • 失效分析論文:高速PCB阻抗一致性研究
    本文通過在不同位置設計單端和差分阻抗線,綜合分析圖形分布、走線位置分布、銅厚等對阻抗一致性的影響,並對影響阻抗控制的關鍵因素進行分析,確定了影響阻抗一致性的主要因素及各因素作用強弱,可為PCB生產時提高PCB阻抗一致性提供參考和借鑑。
  • PCB特性阻抗控制精度化的設計
    不僅搭載RIMM的計算機產品,而且很多的電子產品也需要基板上的電路能很好地與之匹配,一些客戶相應使用的PCB板件的特性阻抗控制精度不在局限於原來的±15%或±10%,有的阻抗控制精度要求提高到±8%甚至±5%,這對PCB製造廠來說確實是很大的挑戰。本文主要針對如何滿足客戶嚴格的阻抗控制精度要求方面進行闡述,希望能對PCB製造業同行有所幫助。
  • PCB板的特性阻抗與特性阻抗控制
    這表明,PCB導線所「流通」的「東西」並不是電流,而是 方波訊號或脈衝在能量上的傳輸。3、特性阻抗控制(Z0 )上述此種「訊號」傳輸時所受到的阻力,另稱為「特性阻 抗」,代表符號為Z0。所以,PCB導線上單解決「通」、「斷」和「短路」的問題還 不夠,還要控制導線的特性阻抗問題。就是說,高速傳輸、高頻訊號傳輸的傳輸線,在質量上 要比傳輸導線嚴格得多。不再是「開路/短路」測試過關,或者 缺口、毛刺未超過線寬的20%,就能接收。
  • 淺談PCB的阻抗控制
    此時,需要藉助傳輸線理論進行分析,控制信號線的特徵阻抗匹配成為關鍵,不嚴格的阻抗控制,將引發相當大的信號反射和信號失真,導致設計失敗。常見的信號,如PCI總線、PCI-E總線、USB、乙太網、DDR內存、LVDS信號等,均需要進行阻抗控制。
  • 阻抗怎麼計算?
    注意,此特性阻抗和波阻抗的概念上的差異(具體查看平面波的波阻抗定義)  Ok,理解特性阻抗理論上是怎麼回事情,看看實際上的意義,當電壓電流在傳輸線傳播的時候,如果特性阻抗不一致所求出的電報方程的解不一致,就造成所謂 的反射現象等等。在信號完整性領域裡,比如反射,串擾,電源平面切割等問題都可以歸類為阻抗不連續問題,因此匹配的重要性在此展現出來。
  • 僅僅只是簡單的阻抗控制嗎?
    然後我們的市場人員就「代替」客戶「發飆」了:我只要求控制一下阻抗,你們就建議做仿真,忒不厚道了……高速先生有苦說不出,只有回到主場,來討論一下,看看「不就是100Ω阻抗控制」,是一個什麼樣的要求……回到我們的設計上,10G
  • PCB阻抗匹配設計技術要求和方法
    2、阻抗主要類型及影響因素阻抗(Zo)定義:對流經其中已知頻率之交流電流所產生的總阻力稱為阻抗(Zo)。對印刷電路板而言,是指在高頻訊號之下,某一線路層(signal layer)對其最接近的相關層(reference plane)總合之阻抗。
  • 自學PCB差分走線的阻抗控制技術(上篇)
    計算機以及通信行業的PCB客戶對差分走線的阻抗控制要求越來越高。這使PCB生產商以及高速PCB設計人員所面臨的前所未有的挑戰。本文結合PCB行業公認的測試標準IPCTM-650手冊,重點討論真差分TDR測試方法的原理以及特點。
  • CAN網絡的特性阻抗及終端阻抗
    1.為什麼要用120歐姆的終端阻抗?關於這跟線下面的問題來討論,另外要說明的是在CAN網絡裡的設備,即CAN收發器,這種器件的輸出阻抗很低,輸入阻抗是比較高的,可以見TJA1050的框圖,也就是說在傳輸線上120歐姆的特性阻抗傳輸的信號突然到了一個阻抗很高的地方,可以理解為斷路,這樣會產生很高的信號反射,影響CAN收發器對電平的採樣,造成信息的誤讀。
  • 為什麼示波器阻抗偏偏是1M和50歐?
    只要保證她的瞬時阻抗不變,她也能將就一下不反射回去。瞬時阻抗就是電信號在傳輸線上某一點所受的阻抗,經過研究發現,均勻傳輸線的瞬時阻抗是個純阻性的,與頻率無關,就像個電阻,而且瞬時阻抗只與傳輸線的幾何結構和填充材料有關,所以又叫做特性阻抗。既然瞬時阻抗像電阻,那我們就給負載並聯一個電阻,讓總阻值和特性阻抗相等,這樣信號就不會有太大的反感,會屈尊降貴的傳到負載中去而不會反射回來,您的電路也就清淨了。
  • 阻抗計算說明 - OFweek電子工程網
    傳輸線特性阻抗的計算  首先,我們來看下傳輸線的基本類型,在計算阻抗的時候通常有如下類型: 微帶線和帶狀線,對於他們的區分,最簡單的理解是,微帶線只有1 個參考地,而帶狀線有2個參考地,如下圖所示