淺談PCB的阻抗控制

2020-11-25 OFweek維科網

  隨著電路設計日趨複雜和高速,如何保證各種信號(特別是高速信號)完整性,也就是保證信號質量,成為難題。此時,需要藉助傳輸線理論進行分析,控制信號線的特徵阻抗匹配成為關鍵,不嚴格的阻抗控制,將引發相當大的信號反射和信號失真,導致設計失敗。常見的信號,如PCI總線、PCI-E總線、USB、乙太網、DDR內存、LVDS信號等,均需要進行阻抗控制。阻抗控制最終需要通過PCB設計實現,對PCB板工藝也提出更高要求,經過與PCB廠的溝通,並結合EDA軟體的使用,我對這個問題有了一些粗淺的認識,願和大家分享。

  多層板的結構:

  為了很好地對PCB進行阻抗控制,首先要了解PCB的結構:

  通常我們所說的多層板是由芯板和半固化片互相層疊壓合而成的,芯板是一種硬質的、有特定厚度的、兩麵包銅的板材,是構成印製板的基礎材料。而半固化片構成所謂的浸潤層,起到粘合芯板的作用,雖然也有一定的初始厚度,但是在壓制過程中其厚度會發生一些變化。

  通常多層板最外面的兩個介質層都是浸潤層,在這兩層的外面使用單獨的銅箔層作為外層銅箔。外層銅箔和內層銅箔的原始厚度規格,一般有0.5OZ、1OZ、2OZ(1OZ約為35um或1.4mil)三種,但經過一系列表面處理後,外層銅箔的最終厚度一般會增加將近1OZ左右。內層銅箔即為芯板兩面的包銅,其最終厚度與原始厚度相差很小,但由於蝕刻的原因,一般會減少幾個um。

  多層板的最外層是阻焊層,就是我們常說的「綠油」,當然它也可以是黃色或者其它顏色。阻焊層的厚度一般不太容易準確確定,在表面無銅箔的區域比有銅箔的區域要稍厚一些,但因為缺少了銅箔的厚度,所以銅箔還是顯得更突出,當我們用手指觸摸印製板表面時就能感覺到。

  當製作某一特定厚度的印製板時,一方面要求合理地選擇各種材料的參數,另一方面,半固化片最終成型厚度也會比初始厚度小一些。下面是一個典型的6層板疊層結構:

  

  PCB的參數:

  不同的印製板廠,PCB的參數會有細微的差異,通過與上海嘉捷通電路板廠技術支持的溝通,得到該廠的一些參數數據:

  表層銅箔:

  可以使用的表層銅箔材料厚度有三種:12um、18um和35um。加工完成後的最終厚度大約是44um、50um和67um。

  芯板:我們常用的板材是S1141A,標準的FR-4,兩麵包銅,可選用的規格可與廠家聯繫確定。

  半固化片:

  規格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0.095mm ),實際壓制完成後的厚度通常會比原始值小10-15um左右。同一個浸潤層最多可以使用3個半固化片,而且3個半固化片的厚度不能都相同,最少可以只用一個半固化片,但有的廠家要求必須至少使用兩個。如果半固化片的厚度不夠,可以把芯板兩面的銅箔蝕刻掉,再在兩面用半固化片粘連,這樣可以實現較厚的浸潤層。

  阻焊層:

  銅箔上面的阻焊層厚度C2≈8-10um,表面無銅箔區域的阻焊層厚度C1根據表面銅厚的不同而不同,當表面銅厚為45um時C1≈13-15um,當表面銅厚為70um時C1≈17-18um。

  導線橫截面:

  以前我一直以為導線的橫截面是一個矩形,但實際上卻是一個梯形。以TOP層為例,當銅箔厚度為1OZ時,梯形的上底邊比下底邊短1MIL。比如線寬5MIL,那麼其上底邊約4MIL,下底邊5MIL。上下底邊的差異和銅厚有關,下表是不同情況下梯形上下底的關係。

  

  介電常數:半固化片的介電常數與厚度有關,下表為不同型號的半固化片厚度和介電常數參數:

  

  板材的介電常數與其所用的樹脂材料有關,FR4板材其介電常數為4.2—4.7,並且隨著頻率的增加會減小。

  介質損耗因數:電介質材料在交變電場作用下,由於發熱而消耗的能量稱之謂介質損耗,通常以介質損耗因數tanδ表示。S1141A的典型值為0.015。

  能確保加工的最小線寬和線距:4mil/4mil。

相關焦點

  • 阻抗板加工的阻抗控制
    在阻抗板加工處理中,如果有信號傳輸,則期望當信號從電源傳輸到接收機時,沒有任何反射,就可以傳輸到接收機而沒有任何反射,前提是能量損失小。要發生這種傳輸,電路中的阻抗必須等於發射機內部的阻抗,才能稱為「阻抗匹配」。
  • 關於PCB的阻抗控制
    沒有阻抗控制的話,將引發相當大的信號反射和信號失真,導致設計失敗。常見的信號,如PCI總線、PCI-E總線、USB、乙太網、DDR內存、LVDS信號等,均需要進行阻抗控制。阻抗控制最終需要通過PCB設計實現,對PCB板工藝也提出更高要求,經過與PCB廠的溝通,並結合EDA軟體的使用,按照信號完整性要求去控制走線的阻抗。
  • PCB板的特性阻抗與特性阻抗控制
    3、特性阻抗控制(Z0 )上述此種「訊號」傳輸時所受到的阻力,另稱為「特性阻 抗」,代表符號為Z0。所以,PCB導線上單解決「通」、「斷」和「短路」的問題還 不夠,還要控制導線的特性阻抗問題。必須要求測定特性阻抗值,這個阻抗也要控制在公差以 內,否則,只有報廢,不得返工。二、訊號傳播與傳輸線1、信號傳輸線定義(1)根據電磁波的原理,波長(λ)越短,頻率(f)越 高。兩者的乘積為光速。
  • PCB特性阻抗控制精度化的設計
    隨著以計算機為先導的電路信號傳輸高速化的迅速發展,其中一個非常重要的問題就是:要求PCB在高速信號傳輸中保持信號穩定,不產生誤動作,這就要求所使用的PCB的特性阻抗控制精度化的提高。對特性阻抗控制精度提出更為嚴格的要求,這對PCB製造廠來說確實是很大的挑戰,為此,本文針對如何滿足客戶嚴格的阻抗控制精度要求方面進行探討,希望能對PCB製造業同行有所幫助。
  • pcb版圖的阻抗控制怎麼計算
    特性阻抗,體現在PCB板上,主要是通過疊層、線寬、線距。在PCB版圖布局完成以後,我們要對PCB板進行層疊設計,將PCB板按照一定的厚度疊好以後,根據層疊結構,通過SI9000這個軟體來進行阻抗線寬的計算,然後根據計算好的線寬來進行布線,即可達到控制特性阻抗的效果。
  • 為了信號完整性,如何控制PCB的控制走線阻抗?
    沒有阻抗控制的話,將引發相當大的信號反射和信號失真,導致設計失敗。常見的信號,如PCI總線、PCI-E總線、USB、乙太網、DDR內存、LVDS信號等,均需要進行阻抗控制。阻抗控制最終需要通過PCB設計實現,對PCB板工藝也提出更高要求,經過與PCB廠的溝通,並結合EDA軟體的使用,按照信號完整性要求去控制走線的阻抗。本文引用地址:http://www.eepw.com.cn/article/201807/389726.htm  不同的走線方式都是可以通過計算得到對應的阻抗值。
  • 3D列印PCB如何幫助阻抗控制的布線
    如果您是超高速PCB或高頻RF器件的設計師,那麼您將在PCB設計軟體中利用阻抗控制的路由功能。使用3D列印來製造PCB,可使設計人員超越通常在PCB設計工具中強制執行的標準走線幾何形狀,同時仍可確保精確的阻抗控制。與標準的平面製造工藝相比,這為設計師提供了更多的選擇來進行阻抗控制的布線和設計互連。
  • 為什麼PCB上的單端阻抗控制50歐姆
    我們都知道近代電子技術很大一部分是來源於軍隊,慢慢的軍用轉為民用,在微波應用的初期,二次世界大戰期間,阻抗的選擇完全依賴於使用的需要。隨著技術的進步,需要給出阻抗標準,以便在經濟性和方便性上取得平衡。從前面阻抗計算公式可知,過低的阻抗需要較寬的線寬以及薄介質(或較大的介電常數),這對於目前高密板來說空間上比較難滿足;過高的阻抗又需要較細的線寬及較厚的介質(或較小的介電常數),不利於EMI及串擾的抑制,同時對於多層板及從量產的角度來講加工的可靠性會比較差;而50歐姆在常用材料的環境下普通的線寬和介質厚度(4~6mil)即符合設計要求(如下圖一阻抗計算),又方便加工,慢慢的成為默認選擇也就不足為奇了
  • 自學PCB差分走線的阻抗控制技術(上篇)
    計算機以及通信行業的PCB客戶對差分走線的阻抗控制要求越來越高。這使PCB生產商以及高速PCB設計人員所面臨的前所未有的挑戰。本文結合PCB行業公認的測試標準IPCTM-650手冊,重點討論真差分TDR測試方法的原理以及特點。
  • 為什麼PCB上單端阻抗控制50歐姆,為什麼常規是10%的偏差?
    很多剛接觸阻抗的人都會有這個疑問,為什麼常見的板內單端走線都是默認要求按照50歐姆來管控而不是40歐姆或者60歐姆?這是一個看似簡單但又不好回答的問題。為什麼說不好回答呢?阻抗系列第二部曲來了,本系列文章中有幾篇當時刷新了最高的閱讀量,好文有口碑就傳開了……最後祝大家2018新春快樂!闔家幸福!01為什麼PCB上的單端阻抗控制50歐姆→點擊查看←很多剛接觸阻抗的人都會有這個疑問,為什麼常見的板內單端走線都是默認要求按照50歐姆來管控而不是40歐姆或者60歐姆?
  • pcb電路板加工廠家電子項目層次原理圖的概念
    對於一個龐大和複雜的pcb電路板加工廠家電子項目的設計系統,最好的設計方式是在設計時儘量將其按功能分解成相對獨立的模塊進行設計,這樣的設計方法會使電路描述的各個部分功能更加清晰。同時還可以將各獨立部分配給多個pcb電路板加工廠家工程人員,讓他們獨立完成,這樣可以大大縮短開發周期,提高模塊電路的復用性和加快設計速度。採用這種方式後,對單個模塊設計的修改可以不影響系統的整體設計,提高了系統的靈活性。
  • 淺談PCB疊層EMC規劃與設計思路
    淺談PCB疊層EMC規劃與設計思路 獵板PCB智慧工廠 發表於 2020-11-10 09:54:26 在PCB的EMC設計考慮中,首先涉及的便是層的設置
  • 自學PCB差分走線的阻抗控制技術(下篇)
    因此這種方法不能直接測出DUT的差分阻抗,只能使用軟體計算的方法對差分阻抗測試進行模擬計算。 在TDR設備上得到經過計算後得到的2個幅度相等,極性相反階躍脈衝。 由於上述幾個差異的存在,導致「coupon」的特徵阻抗往往與板內真實走線阻抗存在如下的幾個差異: 第一,「coupon」測試點間距「coupon」走線的間距不同,會導致測試點與走線之間帶來阻抗不連續。而PCB板內的真實差分走線末端(即晶片的引腳)間距往往是與走線間距相等或者非常相近的。由此會帶來阻抗測試結果的不同。
  • 淺談PCB中的去耦電容設計
    打開APP 淺談PCB中的去耦電容設計 物聯產品&電 發表於 2021-01-07 14:30:28 旁路和去耦是指防止有用能量從一個電路傳到另一個電路中
  • 影響PCB特性阻抗的因素有哪些?
    這些因素與特性阻抗的關係如圖1-20所示。圖1-20 影響PCB特性阻抗分布圖第一個:介質厚度,增加介質厚度可以提高阻抗,降低介質厚度可以減小阻抗;不同的半固化片有不同的膠含量與厚度。其壓合後的厚度與壓機的平整性、壓板的程序有關;對所使用的任何一種板材,要取得其可生產的介質層厚度,利於設計計算,而工程設計、壓板控制、來料公差是介質厚度控制的關鍵。第二個:線寬,增加線寬,可減小阻抗,減小線寬可增大阻抗。
  • 機器人阻抗控制概念
    通俗理解 先看前輩給的定義,「阻抗控制不直接控制機械臂末端與環境接觸力,通過分析『機械臂末端與環境之間的動態關係『,將力控制和位置控制綜合起來考慮,用相同的策略實現力控制和位置控制。」 之前在學阻抗控制的時候就想,既然要控制機械臂末端實現位置控制和力控制,為什麼不直接用兩個PID分別控制位置和力呢?
  • EDA365:通孔的阻抗控制對PCB信號完整性會觸發什麼樣的影響?
    通孔寄生電感引起的等效阻抗可以通過以下公式計算得出: 測試信號的上升時間為500ps,等效阻抗為4.28Ω。但是通孔導致的阻抗變化達到12Ω以上,這表明測量值與理論計算值存在極大的差異。
  • PCB設計之阻抗匹配設計方案
    為保證信號傳輸質量、降低EMI幹擾、通過相關的阻抗測試認證,需要對PCB關鍵信號進行阻抗匹配設計。適用於大部分PCB供應商的製程工藝標準和具有阻抗控制要求的PCB板設計。外層走線的阻抗設計與四層板相同因內層走線一般情況下比表層走線多了個平面層,電磁環境與表層不同以下是第三層走線阻抗控制建議(疊層參考圖4)100歐姆差分阻抗推薦設計線寬、間距 6/10/6 mil差分對與對之間距離≥20mil(3W準則);90歐姆差分阻抗推薦設計線寬、線距 8/10/8 mil差分對與對之間距離≥20mil(3W準則);計算參數:板材FR-4,板厚1.6mm+/-10%,板材介電常數
  • PCB阻抗設計主要類型及影響因素
    1前言 隨著科技發展, 尤其在積體電路的材料之進步,使運算速度有顯著提升, 促使積體電路走向高密度﹑小體積, 單一零件, 這些都導致今日及未來的印刷電路板走向高頻響應, 高速率數位電路之運用, 也就是必須控制線路的阻抗﹑低失真﹑低幹擾及低串音及消除電磁幹擾EMI。阻抗設計在PCB設計中顯得越來越重要。作為PCB製造前端的制前部,負責阻抗的模擬計算,阻抗條的設計。
  • 失效分析論文:高速PCB阻抗一致性研究
    本文通過在不同位置設計單端和差分阻抗線,綜合分析圖形分布、走線位置分布、銅厚等對阻抗一致性的影響,並對影響阻抗控制的關鍵因素進行分析,確定了影響阻抗一致性的主要因素及各因素作用強弱,可為PCB生產時提高PCB阻抗一致性提供參考和借鑑。