在動畫片《辛普森一家》中,辛普森曾經構造出費馬大定理的一個「反例」:
但實際上這個反例我們很容易排除,考慮等式兩端模 3,則左側模3同餘於0(即能被3整除),而右側模3不同餘於0(即不能被3整除),所以這個「等式」肯定不成立。
著名數學家Henri Darmon(加拿大麥吉爾大學數學系James McGill講座教授,加拿大皇家科學院院士,榮獲美國數學會柯爾數論獎。研究領域為代數數論,特別是橢圓曲線、模形式及其相關的L-函數)發郵件稱:
❝There has been a really amazing development today on Fermat's Last Theorem. Noam Elkies has announced a counterexample, so that FLT is not true after all! His spoke about this at the Institute today. The solution to Fermat that he constructs involves an incredibly large prime exponent (larger that 10^20), but it is constructive. The main idea seems to be a kind of Heegner point construction, combined with an really ingenious descent for passing from the modular curves to the Fermat curve. The really difficult part of the argument seems to be to show that the field of definition of the solution (which, a priori, is some ring class field of an imgainary quadratic field) actually descends to Q. I wasn't able to get all the details, which were quite intricate...
So it seems that the Shimura Taniyama conjecture is not true after all. The experts think that it can still be salvaged, by extending the concept of automorphic representation, and introducing a notion of "anomalous curves" that would still give rise to a "quasi-automorphic representation".
❞❝拙譯:
費馬最後定理有了驚人的發展。Noam Elkies給出了一個反例,所以費馬大定理根本不是真的!他在研究所談到了這一點。他所構造的費馬問題的解包含一個非常大的素數指數(大於10的20次方),但它是構造性的。其主要思想似乎是通過Heegner點構造的,結合了一個巧妙的無窮遞降,從模曲線過渡到費馬曲線。其中最困難的部分似乎是證明解的定義域(是一個虛二次域的某個環類域)可以遞降到
看來谷山-志村猜想是不正確的。專家們認為,通過擴展自守表示的概念,引入「反常曲線」概念,仍然可以得到「擬自守表示」,這使得猜想的真實性可能得以挽救。
❞Wiles 1993 年宣布「證明」費馬大定理,而這封郵件是 1994 年廣泛傳播的,這封郵件被MIT的Gian-Carlo Rota教授看到,之後在數學圈流傳開來。數學家K. Conrad也提到過這件事。所以,費馬大定理到底對不對呢?
實際上,這是1994年4月1日的愚人節玩笑。(看到下文的請在文末留言~)
不過,值得一提的是,這件事發生在Andrew Wiles宣布證明費馬最後定理之後,但是是在Wiles修補好證明之前。如果從當年Wiles的角度看,這可能是一則「殘酷」的玩笑。關於Wiles與費馬最後定理的故事,歡迎觀看BBC的紀錄片《費馬最後定理》。
最後,費馬大定理確實是正確的噢!
愚人節快樂!