推薦 | 關於Detrended fluctuation analysis的指南!

2021-02-21 非線性科學研究中心

推薦 | 關於Detrended fluctuation analysis的指南!

本文相關資源摘自指南作者主頁,點擊閱讀原文跳轉至原始發布方。

Detrended fluctuation analysis
Scale-free systems and variability

Investigations of neural signals are often described in terms of an average that discards the observed variability. An average measure, however, might be a poor description of a neural signal, if the signal does not have a typical scale. These systems are referred to as scale-free (for a good review see Hardstone et al. 2012).

More and more research aims at characterizing scale-free signals. It has attracked attention particularly in the fields that study rhythmic (oscillations) and non-rhythmic neural activity. Previous investigations have revealed changes in non-rhythmic neural activity as a function of age (Voytek et al. 2015) and task (He et al. 2010), and log-range correlations in neural signals (Linkenkaer-Hansen et al. 2001).

http://journal.frontiersin.org/article/10.3389/fphys.2012.00450/fullhttp://www.jneurosci.org/content/35/38/13257http://www.cell.com/neuron/fulltext/S0896-6273(10)00291-6http://www.jneurosci.org/content/21/4/1370http://journal.frontiersin.org/article/10.3389/fphys.2012.00450/fullhttp://www.jneurosci.org/content/21/4/1370http://bjornherrmann.com/MultiScaleEntropy.html

One of the challenges researchers face is how to assess noise/variability or scale-free properties in neural signals. In the following, we describe the detrended fluctuation analysis, which quantifies the long-term autocorrelation or long-range correlation of non-stationary signals (Hardstone et al. 2012, Linkenkaer-Hansen et al. 2001). Please see also the tutorial on multi-scale entropy which is closely related to the detrended fluctuation analysis and also quantifies variablity in time series.

Simulated time series with different 1/f structure

For the simulations discussed below, four sample time series with a duration of 60 s were generated. The four time series differ in their (1/f) noise structure: blue noise (1/f^-1), white noise (1/f^0), pink noise (1/f^1), brown noise (1/f^2). The time courses and corresponding spectra are shown on the right. Low-frequency power increases and high-frequency power decreases as the 1/f exponent increases.

Time series may also be derived from the neural power fluctuations over time calculated using time-frequency transformations of the signal (e.g., by means of wavelet analysis).

Detrended fluctuation analysis:The method

The detrended fluctuation analysis method is well descibed in empirical and review papers (Hardstone et al.). The method can be applied to any given time series (although the time series should not be too short) and involves the following steps. The mean is calculated across all time points of the time series and then subtracted from the signal at each time point.

http://bjornherrmann.com/MultiScaleEntropy.html

This centers the signal around zero (the top panel of the figure on the left shows the mean-centered 'white noise' time series). The cumulative sum is calculated for the mean-centered time series (displayed in the middle panel of the figure). Sliding windows of different size are subsequently shifted across the cumulative sum signal with a 50% overlap. Window sizes are usually logarithmically spaced. Here, 20 windows were used and their size ranged from 0.1 s to 50 s (the time course of the cumulative sum for two example windows are displayed in the bottom panel). For each window shift, the signal is detrended using linear regression (i.e., slope and intercept are removed; bottom panel) which mean-centers the signal within a window.

The root-mean-square (RMS) is then calculated for the detended signal (sometimes the standard deviation is used instead). The root-mean square is closely related to the sum over the area between the signal and zero (shaded area in the bottom panel of the figure on the left). The root-mean-square is averaged across all shifts of a particular window size. This results in a mean root-mean-square value for each window size, which, when displayed on logarithmic axes, shows a linear trend (shown in the figure on the right; the color dots relate to the time windows displayed in the figure on the left). Finally, a linear function is fit to the log-transformed root-mean square values as a function of the log-transformed window size. The estimated slope (here called alpha coefficient) of the fitted linear function reflects the degree long-range correlation in the orginal time series (the bar graph in the figure on the right shows the slope/alpha). We show below how slope/alpha depends on the type of 1/f structure in time series

Detrended fluctuation analysis: Results for different noise types

We used the detrended fluctuation analysis to calculate the alpha coefficient for the four different noise types described above. The alpha coefficient (i.e., the slope of the linear function fit to the RMS values; see figure on the left) increases parametrically with the 1/f exponent that was used to generate the time series. White noise (1/f^0) has an alpha coefficient of about 0.5. and pink noise (1/f^1) has an alpha coefficient of about 1. The alpha coefficients indicate that the different time series differ in their scaling properties. They quantify the long-term autocorrelation or long-range correlation of non-stationary signals (Hardstone et al. 2001, Linkenkaer-Hansen et al. 2012). Intuitively, long-range (auto-) correlations are larger with more energy in the low-frequency parts of a signal.

http://journal.frontiersin.org/article/10.3389/fphys.2012.00450/fullhttp://www.jneurosci.org/content/21/4/1370

A matlab script that calculates the detrended fluctuation analysis can be downloaded here.

function [F alpha pred] = detrended_fluctuation_analysis(X,nsamps,overlap)
% [F alpha pred] = detrended_fluctuation_analysis(X,nsamps,overlap) % % Inputs:% X - vector of power over time% nsamps - vector of sample numbers defining the time segments used for the% analysis; segment lengthes should be logarithmic% overlap - expressed as proportion, e.g., 0 - no overlap, 0.5 - 50% overlap%% Outputs:% F - dfa fluctuation parameter% alpha - slope of linear fit to log10(dfa) as a function log10(nsamps);% alpha ~0.5 --> uncorrelated signal (white noise)% alpha >0.5 --> temporal correlations over the range of tau% pred - predicted dfa values from linear fit%% Steps:% (1) mean subtraction, (2) cummulative sum, (3) detrend segments, (4) rms% of detrended sgement, (5) fitting a linear function to dfa%% References:% Linkenkaer-Hansen K et al. (2001) Long-Range Temporal Correlations and % Scaling Behavior in Human Brain Oscillations. J Neurosci 21:1370–1377.% Smit DJA et al. (2013) Long-Range Temporal Correlations in Resting-State Alpha% Oscillations Predict Human Timing-Error Dynamics. J Neurosci 33:11212–11220.%% Description:% The script calculates long-range temporal correlations of oscillatory% activity. It relates to the slope of the 1/f scale-free properties of% power spectra. It is an autocorrelation analysis for non-stationary data.% ----%% Copyright (C) 2015, B. Herrmann% This program is free software: you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation, either version 3 of the License, or% (at your option) any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program. If not, see <http://www.gnu.org/licenses/>.%% % B. Herrmann, Email: herrmann.b@gmail.com, 2015-10-23
% subtract mean from amplitude envelopeX = X(:);X = X - mean(X);nsamps = nsamps(:);
% calculate cummulative sumCX = cumsum(X);
% get shifting vectorshift = round(nsamps*(1-overlap));
F = zeros([length(nsamps) 1]);for ii = 1 : length(nsamps) nn = 1:nsamps(ii); counter = 0; while nn(end) < length(CX) % detrend segment tmpX = detrend(CX(nn)); % calculate RMS F(ii) = F(ii) + sqrt(sum(tmpX.^2)/length(tmpX)); nn = nn + shift(ii); counter = counter + 1; end F(ii) = F(ii)/counter;end
coef = polyfit(log10(nsamps),log10(F),1); % linear fitpred = polyval(coef,log10(nsamps)); % predicted dfa valuesalpha = coef(1); % slope

Please only use under under GNU license. No warranty can be provided. Self-check for errors.

https://www.auditoryaging.com/tutorial-dfa

相關焦點

  • 神經指南:美國神經病學學會關於重症肌無力胸腺切除術的更新指南
    但是,美國神經病學學會(AAN)在2000年發布的關於胸腺切除術對於MG治療效果的實踐指南得出的結論是,無法確定「觀察到的胸腺切除術和MG結局改善之間的關聯為胸腺切除術獲益還是僅為手術組和非手術組之間基線特徵存在多種差異的結果」。建議設計隨機對照試驗進一步明確。2016年,新英格蘭醫學雜誌發表了MG患者胸腺切除術隨機試驗的結果。因此,AAN在現有證據基礎上對2000年的指南作出更新。
  • 臺灣高血壓指南:教你預測降壓效果
    近日,臺灣心臟病學會和高血壓學會聯合發布了2015年高血壓管理指南。在這一指南有幾點比較耐人尋味。
  • 2014NICE指南:CKD早期診斷和管理更新要點
    而關於CKD定義標準,以及老齡化對於CKD及其預後影響的討論也從未停止。NICE根據改善全球腎臟病預後組織(KDIGO)的指南和大型觀察研究的預後數據,對之前的CKD分層建議進行了修訂,並認為有必要對存在不良預後風險的CKD患者進行進一步鑑別。
  • 【指南】兒童心肺復甦和成人有哪些不同?
    麻醉醫生請加微信號mzysteam9 「牛豔紅·美同期發布三部心肺復甦指南,[525].醫師報,2017-11-16(6)」11月6日,《循環》雜誌和美國心臟協會(AHA)官網同時更新三篇關於心肺復甦的指南,分別為2017 AHA成人基礎生命支持和心肺復甦(CPR)質量指南、2017 AHA
  • 專題推薦:紳士福利夏促指南,最低4元起!
    最近到處都是Steam夏促指南,Jerry不也得整一個麼,還得整個不一樣的才行:紳士福利夏促指南,最低4元起,滿足各層槍手的需求。此次指南僅包含在Steam內打折力度較強的作品!按價格從低到高介紹哈!沒什麼耐心的玩家不推薦入手!文字冒險遊戲《女裝神社》,原價37元,現史低18元,支持繁體中文,近期好評率95%!
  • CD86-based analysis enables observation of bona fide ...
    RESEARCH ARTICLE| SEPTEMBER 3, 2020CD86-based analysis enables observation
  • SCCM臨床指南:成人重症患者的持續神經阻滯
    關於這次指南,需要介紹的背景:新指南是對2002年指南的更新;新指南工作組共17位委員;證據評價按照GRADE進行;通過電子會議及面對面形式進行討論;本次指南由SCCM單一學會組織完成,並由SCCM旗下的ACCM(The American College of Critical Care
  • 匿名者發布三個黑客攻擊操作指南「教你如何攻擊ISIS」
    這三個指南主要針對的對象是隸屬於ISIS的網站。黑客與恐怖份子之間的戰爭在巴黎恐怖襲擊事件之後迅速升溫。在短短的兩天內,匿名者黑客組織對ISIS宣戰。而 ISIS則迅速進行報復,並發言稱匿名者組織是只知道如何』入侵郵箱和推特帳戶』的』笨蛋』。另外一方面,目前匿名者公布了一系列的攻擊操作指南,勸說人們參與到#OpParis這個行動中來。
  • 2017 GINA指南:「ACOS」術語將不再使用
    近日,有脈友留言發一下關於ACOS(「哮喘慢阻肺重疊症候群」GINA 2106如此描述)的文章。
  • 2018歐洲高血壓指南發布:高血壓的定義 (1)
    與其他國際指南相比,ESC/ESH高血壓指南對中國高血壓指南的編寫與修訂影響更大,因而得到中國高血壓專家學者的重視。 為迅速、廣泛、深入地了解ESC/ESH高血壓指南的動向並與中國高血壓的臨床實踐相結合,促進國內高血壓領域臨床實踐水平與國際指南接軌,在拜耳醫藥保健有限公司的支持下,中國高血壓聯盟(CHL)與ESH於2018年6月在中國聯合舉辦了ESH in China 2018系列活動,包括ESH指南發布會直播、中歐高峰論壇等內容。
  • AHA發布最新CPR指南
    2017年11月7日,美國心臟協會(AHA)更新發布了成人及兒童基本生命支持及心肺復甦(CPR)質量指南。新指南認為,若急救醫療調度員能通過電話給予胸外按壓指導、若嬰兒和兒童接受胸外按壓及呼吸復甦,將有更多心搏驟停患者得以生存。新指南強調旁觀者發現疑似心搏驟停成人時立即進行胸外按壓的重要性。
  • 歐洲更新低鈉血症診治指南
    (Eur JEndocrinol.2014,170:G1)低鈉血症是指血鈉濃度<135 mmol/L,血鈉濃度130~135、125~129及<125 mg/dl依次為輕度、中度和重度低鈉血症。指南指出,低鈉血症可引起多種臨床症狀,嚴重時危及生命,高達30%的住院患者存在低鈉血症,因此臨床醫生應能夠準確診斷和治療低鈉血症。
  • 腦卒中如何預防 | 圖解指南
    中國心房顫動患者卒中預防規範(2017)頸動脈狹窄診治指南腦血管健康管理與腦卒中早期預防專家共識國家基層高血壓防治管理指南中國腦血管病一級預防指南 2015後臺回復口令「世界卒中日」,收穫指南原文。閱讀推薦:抗栓治療時消化道損傷怎麼辦?
  • e周刊-第4期:指南、急救科普、研究進展
    2.3. 日本呼吸病學協會無創正壓通氣指南(點擊查看)4.6.急診醫師指南:生命維持治療醫囑(PMID28645409)免費下載網址:http://www.sciencedirect.com/science/article/pii/S0196064417305395
  • AHA 2017│ACC/AHA高血壓指南指引高血壓管理新方向
    新指南中正常血壓定義為<120/80 mm Hg,血壓120-129/<80 mm Hg為血壓升高,130-139/ 80-89 mm Hg為1級高血壓,≥140/90 mm Hg為2級高血壓(圖1),≥180/120 mm Hg為高血壓危象。
  • 安利&指南 這個寒假看啥番?
    要不,咱看點動漫吧~那麼看點啥呢hhh,這時候你需要老司機的指南-->本期指南以下面關鍵詞為準來推薦~OK,那麼開始吧~快上車!  推薦者@紙邪 京阿尼吹完喇叭又來妹抖play。。。。不過最終我京還是回來賣萌了推薦者@御坂妹妹  瑪德阿庫婭OK,這些先看著,不夠通知我,繼續開車,不。。
  • 71屆國際電化學年會參會指南
    國際電化學學會第71屆年會「Electrochemistry towards Excellence」貝爾格勒 雲會議2020年8月31日(星期一)至2020年9月4日(星期五) 參會指南一、推薦瀏覽器:Google Chrome, Firefox, Microsoft Edge. 不要使用 Internet Explorer.
  • 春運《」沒事找事「指南》
    ▶對於麻壇老手來說,最好消磨時間的項目那就 打!麻!將!在一碰一胡之間拉近了人與人的距離,也拉近了回家的距離。▶眼睛看累了,該輪到耳朵出場了。還記得我們DJ為大家推薦的2014你最不能錯過的十張專輯嗎?(可戳→)2014年你最不能錯過的十張專輯丨U 推薦 實在懶得下載音樂,可以直接打開收音機鎖定到FM1017,我們24小時音樂不間斷陪你一起回家。
  • 國際高血壓學會:《全球高血壓實踐指南(2020)》
    為了配合其減輕全球高血壓負擔的使命,國際高血壓學會(ISH)制定了全球18歲及以上成人高血壓管理實踐指南。