一、MOSFET開通過程
T0~T1:驅動通過Rgate對Cgs充電,電壓Vgs以指數的形式上升
T2~T3:T2時刻 Id達到飽和並維持穩定值,MOS管工作在飽和區,Vgs固定不變, 電壓Vds開始下降。此期間Cgs不再消耗電荷, VDD開始給Cgd提供放電電流
T3~T4: 電壓Vds下降到0V,VDD繼續給Cgs充電,直至Vgs=VDD,MOSFET完成導通過程。
MOS管導通過程中的各電壓電流曲線如圖3所示,其中Vgs曲線有著名(臭名昭著)的米勒平臺,即Vgs在某段時間(t3-t2)內保持不變。
我們知道MOS管是壓控器件,不同於三極體是流控器件,但是實際上MOS管在從關斷到導通的過程也是需要電流(電荷)的,原因是因為MOS管各極之間存在寄生電容Cgd,Cgs和Cds,如圖4所示。
MOS管導通條件是Vgs電壓至少達到閾值電壓Vgs(th),其通過柵極電荷對Cgs電容充電實現,當MOS管完全導通後就不需要提供電流了,即壓控的意思。
這三個寄生電容參數值在MOS管的規格書中一般是以Ciss,Coss和Crss形式給出,其對應關係為:Cgd=Crss;Cds=Coss-Crss;Cgs=Ciss-Crss。
在MOS管的規格書上一般還有如圖5所示的柵極充電曲線,其可以很好地解釋為何Vgs電壓會有米勒平臺。Vgs一開始隨著柵極電荷的增加而增加,但是當Vgs增加到米勒平臺電壓大小Vp時,即使柵極電荷繼續增加,Vgs也保持不變,因為增加的柵極電荷被用來給Cgd電容進行充電。因此,MOS管會有對應的Qgs,Qgd和Qg電荷參數,如圖6所示。
在t3之後,MOS管進入可變電阻區,米勒平臺結束,Vgs電壓在柵極電荷的驅動下繼續升高至最大值,Vds則電壓下降至最低值Rds(on)*Id。圖3 MOS管導通曲線的簡化版如圖8所示,分析問題時圖8已經足夠使用。MOS管關斷時的分析過程相反,其變化曲線如圖9所示。
所謂開關損耗是指MOS管在開通和關斷過程中,電壓和電流不為0,存在功率損耗。由前述MOS管導通過程可知,開關損耗主要集中在t1~t3時間段內。而米勒平臺時間和MOS管寄生電容Crss成正比,其在MOS管的開關損耗中所佔比例最大,因此米勒電容Crss及所對應的Qgd在MOS管的開關損耗中起主導作用。因此對於MOS管的選型,不僅需要考慮柵極電荷Qg和柵極電阻Rg,也需要同時考慮Crss(Cgd)的大小,其同時也會在規格書的上升時間tr和下降時間tf參數上有間接反映,MOS管的關鍵參數如圖11所示。