高中數學二項式定理及其應用1

2020-12-11 教育界大神

一、二項式定理 二、二項展開式的通項、係數、二項式係數,尤其要注意二項展開式中係數與二項式係數的區別。 三、(1+x)^n的展開式 四、題型:1、求二項展開式的常數項 2、求二項展開式的有理項 3、係數問題:求二項展開式中含x^k項的係數;求二項展開式中第幾項的係數;求二項展開式中含x^k項或第幾項的二項式係數;求二項展開式中兩項係數之比的問題;求二項展開式中係數之和的問題;二項式係數之和問題,和為2^n;4、構造「母函數」證明恆等式問題。

相關焦點

  • 高中數學:二項式定理的常見題型總結
    【相關閱讀】【重要知識點】(1)二項式定理即為公式:(2)二項展開式的通項公式:展開式中的第r+1項為:本文將給同學們比較詳細地介紹二項式定理的常見題型和解題方法
  • 高中數學:二項式定理的常見題型
    (南寧三中   許興華數學)【重要知識點】(1)二項式定理即為公式:
  • 教學研討|1.3.1 二項式定理
    二、內容分析二項式定理是初中乘法公式的推廣,是排列組合知識的具體運用,是學習概率的重要基礎.這部分知識具有較高應用價值和思維訓練價值.中學教材中的二項式定理主要包括:定理本身,通項公式,楊輝三角,二項式係數的性質等.
  • 二項式定理的常見題型
    這裡將把你帶入一個奇妙而精彩的數學世界,她將使你的數學能力及思維方法錦上添花.【重要知識點】(1)二項式定理即為公式:     (2)二項展開式的通項公式:展開式中的第r+1項為:          本文將給同學們比較詳細地介紹二項式定理的常見題型和解題方法,供同學們複習時參考。
  • 高考數學衝刺,二項式定理的應用講解分析
    考點分析;二項式係數的性質.題幹分析:利用二項式定理展開即可得出.典型例題分析4:考點分析:二項式定理;微積分基本定理.題幹分析:由條件利用二項式展開式的通項公式求得a的值,再利用積分的運算性質、法則,求得要求式子的值.
  • 高考數學:排列組合、二項式定理、統計及統計案例、概率考點目錄
    第13課利用正難則反間接法解決高考數學排列組合壓軸題(全國、天津、浙江).第14課高考數學核心考題注意不同問題不同的分類標準注意合併與分解.第15課排列組合典型例題含有小團隊的處理方法及化未知到已知的思想.第16課二項式定理二項展開式通項公式係數等基本概念.第17課二項式定理一題通關通項問題(秒殺)係數二項式係數等問題.
  • 掌握了這個數學方法,你就能夠快速驗證二項式定理
    說到二項式定理,這應該是初等數學中比較有趣的一個內容。因為二項式定理涉及到了代數學,組合學。很多的關於二項式定理的文章都是講如何通過組合方法或者數學歸納法來證明二項式定理的。組合論證方法以及數學歸納法都是初等數學中的經典內容,組合論證二項式定理的證明過程看上去有些抽象,而數學歸納看起來更像是事先知道結果而進行的略有些枯燥的論證。
  • 二項式定理的通俗解釋
    在中學數學裡,我們會經常遇到一個叫做「二項式定理(Binomial Theorem)」的知識。
  • 牛頓的數學成就(之一)——二項式定理
    牛頓的數學成就很多很多,今天只講一項,那就是二項式定理。我們大概應該知道,對正整數來說,二項式定理可以寫成下面的形式:(注意,其中r=0時,二項式係數永遠等於1)。下面是n=1,2,3,4,5時的結果:
  • 二項式定理
    我們通過基礎的計數原理可以得到排列與組合的計算公式,它們的應用很廣泛。其中二項式定理就是組合公式的一個簡單應用。二項式是指兩個變量和的正整數次方的展開式,n次展開式的展開項的種類是n+1種,因為展開之後的每項的次數之和都是n次,一共有n+1種兩個變量指數次數的組合。假設求取(a+b)的n次方的展開式,那麼其中a的指數為m的那一項的係數是多少呢?
  • 二項式定理」到底有多重要?
    公元263年,二項式定理的雛形已經出現在我國古代的數學巨著《九章算術》裡面。可見我國古代的數學著重於「問題的獨立應用」,沒有形成「公理系統」的數學思維。到了16世紀的西方,「二項式係數表」已經深入人心,在眾多數學家的著作裡面已經出現。1654年,數學家帕斯卡,建立了「一般正整數次冪」的二項式定理。經過無數數學家的努力,「二項式定理」穿過歲月的長河,歷經風雨,終於完美出爐。
  • 求解二項式定理展開式係數的六大模型一個都不能少!!!
    公眾號「鄒生書數學」創建於2018年8月28日。    開號宗旨:為熱愛學習和研究的高中數學教師和教研員搭建學習交流平臺,提升教學能力,促進專業發展。本公眾號致力傳播數學文化,發表教研成果,交流教學經驗,探討數學問題,展示解題方法,分享教學資源,為服務高中教學作貢獻。
  • 2018高考數學二項式定理的題型總結
    同學們好,二項式定理是理科生的專利,當然理科生需要總結歸納二項式定理有哪些題型和變形。今天小新老師就將這些知識總結歸納出來,以供參考借鑑。題型二、二項式係數之和問題 此類問題求解時一定要注意二項式係數之後的應用,注意如下: (1)第(1)小題求解的關鍵在於賦值,求出a0與n的值;第(2)小題在求解過程中,
  • 衝刺19年高考數學,典型例題分析163:二項式定理的應用
    典型例題分析1:(1﹣x)6(1+x)4的展開式中x2的係數是(  )A.﹣4 B.﹣3 C.3 D.4考點分析題幹分析:把已知二項式變形,然後展開二項式定理,則展開式中x2的係數可求.典型例題分析2:考點分析:二項式係數的性質.
  • 高中數學公式大全:計數原理與二項式定理
    高中數學公式大全:計數原理與二項式定理 2019-02-15 15:18 來源:新東方網編輯整理 作者:
  • 衝刺19年高考數學,典型例題分析220:二項式定理的應用
    典型例題分析1:二項式(1/x﹣x)9的展開式中x3的係數是(  )A.84題幹分析:根據二項式展開式的通項公式,令x的指數等於3,即可求出展開式中x3的係數.典型例題分析2:考點分析:二項式係數的性質.
  • 數學的鑰匙:二項式定理,從初等數學通往高等數學領域
    數學的鑰匙:二項式定理,從初等數學通往高等數學領域二項式定理就是(a+b)^n,其展開有各項,即a^m*b^(n-m),各有其係數,稱為二項式係數。二項式定理這個公式有加法,和乘法。(a+b)^n的展開,就是二項式定理,可以用來展開所有六個初等函數的級數。我們知道大學的高等數學中有泰勒級數,所有的泰勒級數都是可以用二項式定理展開的。所以,這就是用代數方法解決高等數學的問題。歐拉著的《無窮分析引論》中有對這個問題的具體措施。對二項定理的理解,需要對於排列組合有深刻的理解。
  • 利用楊輝三角形來解釋二項式定理
    我對二項式定理(Binomial Theorem)的熱愛無以言表,它看上去有很多數學符號,但本質上是用組合的方法來解決一個長得可怕的代數問題。尤其在你邂逅美妙的楊輝三角時,就會更感受到的數學不可思議之處。但當第一次遇到它的時候,二形式定理中這些並不熟悉的數學符號可能會讓你望而生畏。
  • 「楊輝三角」與「二項式定理」的相遇,成就了數學史上的一段美談
    無論是在整部數學的發展史中,還是在個人的數學學習當中,「數形結合」的思想都是極為重要的工具。比如我國古代的「楊輝三角」與西方的「牛頓二項式定理」的結合,成了數學史中的一段美談,然而這到底是怎麼回事呢?還得從我們初中二年級學習的「因式分解」說起。我們知道,把一個「多項式」化為幾個「整式的積」的形式,我們稱這為「因式分解」。
  • 高中數學:二項式定理試題求解的一般規律
    1、通項意識求二項式展開式中的某一項或某項係數,一般先利用公式